Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 智慧醫療與健康資訊碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94926
標題: 注意力深度學習方法應用於時間序列腦電波圖針對心跳停止後腦神經損傷的預後預測
An Attention-Based Deep Learning Approach of Using Time-Series EEG for Predicting Neurological Outcomes in Cardiac Arrest
作者: 曾世傑
Jefferson Sy Dionisio
指導教授: 林澤
Che Lin
關鍵字: 腦電圖分類,心臟驟停,多頭注意力機制,結果預測,時間序列數據,變壓器,
EEG classification,cardiac arrest,multi-head attention,outcome prediction,time series data,Transformer,
出版年 : 2024
學位: 碩士
摘要: 突發性心臟驟停(SCA)患者通常因缺氧時間過長而陷入昏迷,醫師需提供神經系統預後,協助臨床決策。本研究旨在利用早期腦電圖(EEG)數據訓練Transformer模型,預測SCA昏迷患者的神經系統預後。Transformer模型利用自注意力機制從長序列中學習模式。我們利用完整的小時級EEG序列,將其分割為5分鐘的時段,使模型能夠捕捉長距離的時間序列模式。通過將每個EEG序列視為訓練樣本,我們增加了數據樣本量,提高了模型學習特定記錄模式的能力。預測結果按患者進行了整合評估。專注於EEG數據的模型展現出了良好的預測性能,在保留測試集上的AUROC為0.82,AUPRC為0.90,在外部測試集上的AUROC為0.73,AUPRC為0.93。本研究凸顯了注意力機制在識別EEG序列中時間模式方面的潛力,提升了對SCA患者預後的能力。
Surviving sudden cardiac arrest (SCA) patients often remain in a coma due to a prolonged lack of oxygen, requiring physicians to provide prognoses on neurological outcomes to aid in clinical decisions. This study aims to predict neurological outcomes in SCA coma patients using early electroencephalogram (EEG) data to train a Transformer model, which leverages self-attention to learn patterns from lengthy sequences. We utilized full hours of EEG sequences, subdividing them into 5-minute epochs, allowing the model to capture long-distance time series patterns. By treating each individual EEG sequence as a training sample, we increased our data sample size and improved the model's ability to learn recording-specific patterns. Predictions were aggregated for patient-wise evaluation. Focusing exclusively on EEG data, our model demonstrated promising predictive performance, with an AUROC of 0.82 and an AUPRC of 0.90 on the holdout test set, and an AUROC of 0.73 and an AUPRC of 0.93 on an external test set. This study underscores the potential of attention mechanisms to discern temporal patterns in EEG sequences, enhancing SCA patient prognosis.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94926
DOI: 10.6342/NTU202403906
全文授權: 同意授權(全球公開)
電子全文公開日期: 2025-01-31
顯示於系所單位:智慧醫療與健康資訊碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf8.64 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved