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摘要

突發性心臟驟停（SCA）患者通常因缺氧時間過長而陷入昏迷，醫師需提供

神經系統預後，協助臨床決策。本研究旨在利用早期腦電圖（EEG）數據訓練

Transformer模型，預測 SCA昏迷患者的神經系統預後。Transformer模型利用自

注意力機制從長序列中學習模式。我們利用完整的小時級 EEG序列，將其分割為

5分鐘的時段，使模型能夠捕捉長距離的時間序列模式。通過將每個 EEG序列

視為訓練樣本，我們增加了數據樣本量，提高了模型學習特定記錄模式的能力。

預測結果按患者進行了整合評估。專注於 EEG數據的模型展現出了良好的預測

性能，在保留測試集上的 AUROC為 0.82，AUPRC為 0.90，在外部測試集上的

AUROC為 0.73，AUPRC為 0.93。本研究凸顯了注意力機制在識別 EEG序列中

時間模式方面的潛力，提升了對 SCA患者預後的能力。

關鍵字：腦電圖分類、心臟驟停、多頭注意力機制、結果預測、時間序列數據、

變壓器
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Abstract

Surviving sudden cardiac arrest (SCA) patients often remain in a coma due to a pro-

longed lack of oxygen, requiring physicians to provide prognoses on neurological out-

comes to aid in clinical decisions. This study aims to predict neurological outcomes in

SCA coma patients using early electroencephalogram (EEG) data to train a Transformer

model, which leverages self-attention to learn patterns from lengthy sequences. We uti-

lized full hours of EEG sequences, subdividing them into 5-minute epochs, allowing the

model to capture long-distance time series patterns. By treating each individual EEG se-

quence as a training sample, we increased our data sample size and improved the model’s

ability to learn recording-specific patterns. Predictions were aggregated for patient-wise

evaluation. Focusing exclusively on EEG data, our model demonstrated promising pre-

dictive performance, with an AUROC of 0.82 and an AUPRC of 0.90 on the holdout test

set, and an AUROC of 0.73 and an AUPRC of 0.93 on an external test set. This study

underscores the potential of attention mechanisms to discern temporal patterns in EEG

v
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sequences, enhancing SCA patient prognosis.

Keywords: EEG classification, cardiac arrest, multi-head attention, outcome predic-

tion, time series data, Transformer
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Chapter 1

Introduction

1.1 Motivation

Recently, statistics have shown a steady increase in sudden cardiac arrest (SCA) cases

due to increasing unhealthy lifestyles across many countries [1]. Patients who experience

SCA often arrive in the intensive care units (ICU) of hospitals several minutes or hours

after their initial cardiac arrest. Oftentimes, these patients remain in the coma state due

to prolonged lack of oxygen, which causes hypoxic-ischemic brain injuries [2,3]. The fu-

ture outcomes of coma patients remain uncertain, and physicians have to inform patients’

guardians on whether the patient is predicted to recover from the coma or to remain in a

vegetative or neurologically impaired state. This patient prognosis is extremely important

as bad prognoses might result in the discontinuation of life support. Physicians, in turn, are

tasked by clinical protocols to only provide patient prognoses on neurological outcomes

of patients 72 hours after the return of spontaneous circulation (ROSC) [4].

In the clinical setting, electroencephalogram (EEG) has become an important signal

biomarker extracted to aid medical experts in studying the underlying brain conditions of
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their patients. These signals, when interpreted visually, may provide insights to clinicians

when predicting future outcomes for patients since they show the overall current condition

of the brain. In recent years, we have seen an upward trend in online challenges that

involve the usage of open-source EEG datasets, such as the 2003 BCI Competition [5] and

the 2018 PhysioNet Challenge [6], which indicates the increasing interest in constructing

computing methods for analyzing EEG, especially in downstream classification tasks.

In 2023, the PhysioNet Challenge [7–9] released a large corpus of data consisting of

EEG, ECG (electrocardiogram), and other clinical data from comatose cardiac arrest pa-

tients from seven hospitals across the US and Europe. The EEG and other signal channels

were gathered hourly, starting from ROSC and terminating mostly around the 72nd-hour

mark. Its goal was to provide a computing solution for predicting the neurological out-

comes of these patients using the early EEG, ECG, and other data provided and evaluating

with the ground truth labels gathered through phone calls or chart review 3 to 6 months

after ROSC.

EEG is very time-dependent as the signals highly fluctuate over time. Furthermore,

the 2023 PhysioNet Challenge dataset contains an hour-long EEG recorded for every pa-

tient up to 72 hours after ROSC. Thus, in this thesis, we utilized this dataset in our solution

that aims to maximize attention-based learning of long distance temporal dependencies

among the continuous EEG recordings. Then, we used an external private dataset from

the National Taiwan University Hospital (NTUH) to test the model’s generalizability in a

different clinical setting. In the next section, we’ll first discuss all related works to this

study, then show our proposed solution in more detail in the subsequent section.

2
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1.2 Related Works

In the past, researchers have used EEG to predict the neurological outcomes of coma

patients through various statistical methods [10,11]. Wennervirta et al. [10] gathered EEG

data from 30 coma SCA patients from the ICU of the Helsinki University Hospital and

used the chi-square test to predict outcomes with clinically interpretable features such as

burst-suppression ratio, response entropy, state entropy, and wavelet subband entropy as

inputs. Cloostermans et al. [11], similarly, gathered EEG data from 56 coma SCA patients

from the ICU of the Medisch Spectrum Twente, Enschede, the Netherlands. They built

their predictive model using absent short-latency (N20) SSEP as input due to its known

good feature representation of EEG [12]. Both studies obtained prediction results that

indicated good discriminative abilities, differentiating the good from the bad outcomes,

when evaluated with early EEG, particularly EEG from the first 24 hours after ROSC,

and using automatically selected 5-minute epochs from every hour of recording.

Recently, researchers have chosen to transition from conventional statistical meth-

ods to machine learning and even deep learning methods [13–17]. A study [18] analyzed

EEG data from 69 comatose SCA children, selecting the first artifact-free 5-minute epoch

per hour from all available recordings. EEG recordings were first filtered with a Butter-

worth bandpass filter [19] in the range of 0.1 to 50 Hz, followed by a notch filter of 60 Hz

to remove the power line along that frequency. Then, they selected 8 quantitative EEG

(QEEG) features, including the spectral density, normalized band power along the 5 fre-

quency bands - δ (0.5-3Hz), θ (4-7 Hz), α (6-12 Hz), β (13-30 Hz), and γ (25-50 Hz),

line length, and regularity function scores. Together with the patient’s age, the 8 QEEG

features were normalized, and the average was obtained for each of the EEG channels. Fi-

3
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nally, they used machine learning models such as random forest, logistic regression, and

support vector machine for two experimental setups, one for early EEG (0-17 hours after

ROSC) and one for late EEG (18 hours onward).

Another study [13] utilized the dataset from the 2023 Physionet Challenge and used

a bidirectional long short-term memory (bi-LSTM) model to learn long and short-term

time dependencies. They used nine clinically interpretable features, including burst sup-

pression ratio, Shannon entropy, δ (0.5-–4 Hz), θ (4–-7 Hz), α (8–-15 Hz), β (16–

-31 Hz) band power, α/δ ratio, regularity, and spike frequency as their input to the model.

They first performed bipolar referencing as it is a common method to reduce channel-wise

artifacts [20, 21]. Then, they subdivided the EEG sequences into 5-minute segments and

calculated the artifact scores for each 5-second segment within these 5-minute intervals,

using them as weights to define signal quality. They achieved an AUROC score of 0.78

at 12 hours and 0.88 at 66 hours, demonstrating that the model’s performance improves

over time with clinically interpretable features as input.

The Transformer model [22], initially designed for natural language processing tasks

like text translations and chatbots, has recently been applied to various time-series data. Its

efficiency in handling long-distance dependencies and learning temporal patterns through

parallel processing with multiple heads and positional encoding makes it well-suited for

these applications. For instance, Wu et al. [23] have applied the Transformer to wind speed

data and achieved promising wind speed forecasting results. Another study [24] used the

Transformer for multimodal data, fusing doctors’ clinical notes with structured EHR data,

further indicating its adaptability to diverse datasets.

When it comes to EEG, there has also been numerous research that leveraged the

4
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Transformer for classification tasks. For instance, Du et al. [14] utilized EEG data with

the Transformer to develop a model for person identification. Yan et al. [15] used scalp

EEG data with the Transformer for seizure prediction tasks. Guo et al. [16] used EEGwith

the Transformer for emotion recognition and visualization tasks, while Zeynali et al. [17]

used it for motor imagery classification.

Randomly sampling an epoch from an EEG sequence, as commonly done in previous

studies [18,24], is effective. However, using full EEG sequences for training Transformer-

based models, as demonstrated in several studies [14,25,26], avoids the potential waste of

valuable biological data inherent in sampling only small windows, especially from long

sequences of recordings.

In the 2023 George B. Moody PhysioNet Challenge, some studies [27, 28] utilized

the Transformer to predict neurological outcomes, but both studies only used randomly

selected 5-minute epochs. Both studies could not receive a final evaluation in the challenge

due to technical problems. In our previous study [29], we also used the Transformer as our

predictive model and achieved competitive results in the hidden validation and test sets

in the challenge. Our previous study used features extracted from entire EEG sequences

but only used the last hour of EEG recording from every patient, and both the clinical and

EEG data were used as input for the model. The challenge winner [30] used a non-time-

dependent model using an ensemble of machine learning models and used both EEG and

ECG data to train and evaluate their models.

Some of those previous studies that used the Transformer with EEG [14–17] have

used raw data as input to train their models. However, their EEG data consisted of only

a few seconds to a few minutes of recordings from small tasks or events. In our study,
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the recordings are significantly larger since they are continuous EEG recordings recorded

every hour up to 72 hours after ROSC. Therefore, it is vital to perform some feature en-

gineering, such as what previous studies [10, 11, 13, 18] used to reduce computational

complexity.

The above-mentioned previous studies have mostly used multiple types of quanti-

tative features extracted from EEG. However, some studies [31–34] have also chosen to

only use one type of feature, particularly power spectral densities (PSD), for their EEG

analysis tasks and achieved promising results, indicating its excellent representation as

EEG features. Alam et al. [31] used PSD features extracted from the BCI competition IV,

dataset 2b, and trained an LDA classifier for motor imagery classification. Kim et al. [32]

used PSD features extracted from both datasets 2a and 2b from the BCI competition and

achieved good accuracies for single session, session-to-session, and the different types of

2-class motor imagery for different subjects. Wang et al. [33] extracted PSD features from

14 patients’ EEGs from theDepartment of Neurology of BeijingHospital for the classifica-

tion of Alzheimer’s disease and achieved a promising accuracy during evaluation. Finally,

Dressler et al. [34] conducted a study to test patients’ awareness through EEG monitor-

ing. They evaluated the extracted PSD features from their 8-second EEG segments and

used remapped prediction probability (rPK) values to compare results from different fre-

quencies, with their best results at 35 to 127 Hz. Following these studies, we explore

utilizing only PSD-based EEG features as it provides a good quantitative representation

of EEG that is both clinically interpretable and provides good discriminative features for

deep learning models to learn from.
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1.3 Problem Statement

In the related works, most studies were shown to only utilize 5-minute epochs to

represent entire EEG sequences. However, it is intuitive that we are wasting valuable,

rich biological data when we only subsample from a small sequence, especially on long

continuous EEG sequences such as the one to be used in our current study. Moreover,

most studies in the related works, especially those studies from the challenge [27–30],

trained their predictive models using patient-wise samples, which means that each input

is a recording from a single patient. When training deep models such as what we aim

to use in our study, it is generally better to use more data as training input to help the

model learn more patterns and generalize to new unseen data. Finally, the studies from

the challenge all leveraged multimodal data to train their models and achieved very good

results. However, whether we can achieve the same promising results when we utilize

only EEG as the input remains unclear.

1.4 Objectives

EEG is very time-dependent as the signal varies over time for each hour of EEG

recording, and the EEG from the dataset we used consisted of continuous hour-long se-

quences. In this thesis, we explore using an attention-based deep learning approach, partic-

ularly the Transformer [22], to predict the neurological outcomes of coma patients. The

Transformer works well with time-series data due to its attention mechanism and posi-

tional encoding, which aid the model in learning long-distance dependencies across long

sequences and temporal dependencies for each time position in a sequence.
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This thesis consists of the following objectives and our corresponding hypotheses.

1. Recording-wise Training Method: Each EEG sequence was used independently

to train the model while the models were evaluated with patient-wise predictions.

This was done mainly to increase the sample size of our model while also aiding

the model in learning recording-specific patterns so it can learn to predict outcomes

regardless of which hour of EEG is used during model evaluation.

2. CapturingLong-DistanceTemporal Patterns fromContinuousEEG:Each EEG

sequence was initially subdivided into multiple epochs to serve as time steps, where

an epoch corresponds to an event in an EEG. Often, it is a common preprocessing

strategy when dealing with EEG to subsample an epoch from a sequence of EEG

and only use it for analysis. In our study, we used all the hours of EEG as train-

ing samples for our model to learn important long-distance temporal patterns across

each recording.

3. Leveraging Only EEG Data to Train the Model is Enough: Instead of using a

multimodal approach as what the previous studies from the challenge [27–30] have

used, we focused solely on analyzing EEG to build a model that only needs EEG as

input to be able to predict neurological outcomes accurately.

We hypothesize that through these steps, we are able to maximize the learning ca-

pability of the Transformer in capturing long-distance temporal patterns among each se-

quence through its attention mechanism.
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1.5 Thesis Organization

The remainder of this thesis is organized as follows. We first introduce all important

background knowledge used in our study in Chapter 2. Then, we list all materials and

methods used in this thesis, including the model architecture design, signal processing

steps, and other data preparation and experimental setups in Chapter 3. Following this, we

show the experimental results and discussions in Chapter 4 through careful experiments

and analyses. Lastly, we conclude this study in Chapter 5.
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Chapter 2

Background

2.1 Deep Learning

A significant part of our research pipeline involves training a deep neural network.

In the following sections, we will first explain the concepts to help readers understand

the components used in our experiments. In order to understand deep neural networks, it

is important to first discuss machine learning since deep neural networks, also known as

deep learning, are a subfield of machine learning.

2.1.1 Machine Learning

Machine learning [35] can generally be divided into two main categories: supervised

learning and unsupervised learning. Supervised learning involves using a labeled dataset

to aid the model in learning by comparing its prediction results from the labels known

as the ground truth. Unsupervised learning involves allowing the model to learn patterns

across unlabelled datasets. Both types of learning are used across a large field of studies,
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such as in image classification, speech recognition, and machine translation. Additionally,

there are also categories, such as semi-supervised learning, that involve using a dataset

composed of labeled and unlabelled data.

In supervised learning, we can further divide problems into two categories: classi-

fication and regression problems. Classification involves classifying data into different

classes, such as 1 or 0, for binary classification problems. Regression, on the other hand,

involves generating predictions on numerical precision values, such as problems involving

predictions on temperature or stock market prices. Our study uses supervised learning for

a classification problem as we aim to predict patient outcomes based on early EEG, where

the labels are the ground truth obtained 3 to 6 months after ROSC through phone calls or

chart reviews. For supervised learning, the general formula used is y = mx + b, where

y is the prediction, x is the input, m is the slope, and b is the intercept. The model learns

by minimizing a loss function, which is generally represented by L = 1
N

∑N
i=1(yi − ŷi),

where N is the total number of input, yi is the prediction for the ith sample, and ŷi is the

ground truth for the ith sample. In this formula, we are simply computing the summation

of the loss (difference between prediction and label) for each sample, and by minimizing

this, the model is being led to generate better predictions.

2.1.2 Deep Neural Networks

In machine learning, neural networks are computational models inspired by biologi-

cal neurons in the human body. Each neuron in these artificial networks is interconnected

through multiple layers, known as hidden layers, which aim to learn patterns from pre-

vious layers. Generally, the more layers a network has, the better it can learn complex

patterns from the input data to make accurate predictions. A neural network that consists
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Figure 2.1: Sample diagram of a fully connected network.

of multiple hidden layers is known as a deep neural network [36, 37].

A fully connected (FC) network, also known as a dense network, is a type of deep

neural network where each node in one layer is connected to every node in the next layer.

This type of network architecture allows for complex relationships to be learned between

input and target variables through the network layers [36]. Figure 2.1 shows a sample

diagram for a simple FC network.

However, there are cases where models learn very specific patterns from the training

set, leading to a situation known as overfitting. Overfitting occurs when a model, which

is supposed to learn patterns that generalize well across different data types, instead learns

patterns that are too specific to the training set.

The output for each hidden layer in a simple deep neural network is computed by

performing a linear function then applying an activation function over the result at the kth

layer, denoted as hk = a[βk−1 + ωk−1hk−1], where a is the activation function, β is the

bias or intercept, ω is the weight vector, and hk−1 is the result from the previous layer or

the input itself when computing the first hidden layer. In deeper neural networks, there

are usually a large number of hyperparameters in the model that can be manually changed

or learned during model training, and these hyperparameters play a vital role in model

training to maximize the performance of the model during evaluation. The bias and the
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weights from the above formula are also considered hyperparameters [37].

The model learns hyperparameters that minimize the loss function through gradients

that are handled by optimizers. The simplest optimizer is gradient descent, where the

model initially starts with some default parameters ϕ = [ϕ0, ϕ1, . . . , ϕN ]
T , where ϕ is the

parameter the model seeks to minimize with the loss function, that is ϕ̂ = argminϕ[L[ϕ]].

The first step involves computing derivatives of the loss with respect to the parameters

δL
δϕ
, then the parameters are updated on the way back ϕ = ϕ − α δL

δϕ
, where the scalar α

determines the magnitude of the change [37].

Another popular optimizer often used in machine learning is the Adam optimizer, or

‘adaptive momentum estimation.’ In Adam, additional momentum and direction are in-

corporated into the original gradient descent equation. This change helps the model avoid

the undesirable properties of gradient descent, which tend to push large adjustments to

parameters associated with large gradients and small adjustments to parameters associ-

ated with small gradients. Such imbalances may cause exploding gradients and vanishing

gradients, respectively [37].

Exploding gradients and vanishing gradients are phenomena that can occur during

the training of deep neural networks. Exploding gradients refer to situations where the

gradients become extremely large, often causing the model parameters to become unstable

and leading to a failure in training. Vanishing gradients, on the other hand, occur when the

gradients become extremely small, effectively vanishing and preventing the model from

learning because the updates to the model parameters become negligible [36].
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2.1.3 Activation Function

Neural networks typically involve computing outputs using a linear function y =

mx+ b. However, deep neural networks aim to learn complex patterns, and relying solely

on linear functions makes this challenging because linear functions cannot capture the

intricacies of non-linear relationships in the data. For this, activation functions are used

to introduce nonlinearity into the network by transforming these linear outputs. The most

basic and common type of activation function is the ReLU (Rectified Linear Unit) [38],

which introduces nonlinearity by retaining all positive values and transforming all negative

values to zero. It is mathematically represented by R(z) = max(0, z), where R(z) is 0

when z is negative and z itself when it is positive. This non-linear transformation allows

the neural network to learn and represent more complex patterns and functions.

2.1.4 Regularizer

Regularizers are techniques used to prevent overfitting, improve the generalization

of models, and control the complexity of the model. Various methods are employed as

regularizers, with some of the most common being dropout, batch normalization, and

layer normalization.

One of themost common regularization techniques in deep neural networks is dropout

[39], where random units (neurons) are dropped during model training. This means that a

fraction of the neurons are set to zero during each forward and backward pass, effectively

preventing them from participating in the computation. Dropout reduces the likelihood of

overfitting by ensuring that the model does not become overly reliant on any single neu-

ron, thereby encouraging the network to learn more robust features that generalize better
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to new data.

Another widely used method is batch normalization [40], which includes normaliza-

tion as part of the model architecture. Batch normalization normalizes the activations of

each mini-batch to have a mean of zero and a variance of one. This technique mitigates the

problem of internal covariate shift, where the distribution of network activations changes

during training, allowing for higher learning rates and improving the convergence speed.

Batch normalization can also act as a regularizer, often reducing the need for dropout by

stabilizing the learning process and improving model generalization.

Another type of regularizer is layer normalization [41], which aims to compute the

mean and variance used for normalizing the samples across all the activations within a

single layer rather than across a mini-batch, as with batch normalization. Layer normal-

ization significantly improves training time and provides more stable computations across

longer data sequences, making it particularly suitable for models like the Transformer that

usually handle large amounts of long data sequences. Unlike batch normalization, layer

normalization does not depend on the batch size and can be more effective in scenarios

with varying sequence lengths or small batch sizes.

2.2 The Transformer Model

The Transformer [22] is a deep learning model that consists of an encoder and a de-

coder block. In general, encoder-decoder neural network architectures [42] are designed

such that the encoder learns an embedding that best represents the original input sequence

while the decoder transforms this embedding into a desired output sequence. Figure 2.2

illustrates a simple encoder-decoder structure, where the number of nodes in the encoder
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Figure 2.2: Sample diagram of an encoder-decoder network.

network reduces through each layer, and the number of nodes in the decoder network

increases through each layer. Here, x represents the original input, z is the learned em-

bedding between the encoder and decoder, and x̂ is the reconstructed input.

However, in the Transformer, the roles of the encoder and decoder differ slightly.

The encoder’s objective is to learn an embedding with the same dimension as the original

input, which captures essential features of the input sequence. On the other hand, the

decoder uses this embedding to generate the subsequent elements in a sequence, making

it particularly useful for tasks like translation and chatbots. The Transformer excels in

processing long, time-series sequences due to its ability to handle parallel processing and

the use of positional encodings, which help in capturing temporal patterns across time steps

over long sequences. The whole model architecture of the Transformer [22] is shown in

Figure 2.3.

The Transformer’s encoder block consists of the multi-headed attention (MHA) and

feedforward (FF) sub-blocks. First, the input sequence is divided into some number of

tokens, and each token will be transformed into dmodel sized embeddings. Then, posi-

tional encoding is injected into each token to aid the model in learning temporal pat-

terns across the sequence. In the original implementation of the Transformer [22], the

positional encoding is computed using sinusoidal functions, composed of sine and cosine

functions of different frequencies, represented by PEpos,2i = sin(pos/100002i/dmodel) and

PEpos,2i+1 = cos(pos/100002i/dmodel), where pos is the position of the token in the se-
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Figure 2.3: The Transformer model architecture [22].

quence and i is the dimension. Each dimension in the computed positional encoding then

corresponds to a sinusoid, where the wavelengths would form geometric progressions

from 2π to 10000 · 2π. These computed positional encodings will have the same dmodel

sized embeddings, thus allowing for convenient addition of matrices. Without positional

encoding, the model will simply treat each token in the sequence equally and will not be

able to identify which token comes before or after the others.

The MHA sub-block consists of a residual connection that adds the original input

back to the output after MHA computation, followed by layer normalization. Residual

networks have long been used in neural networks with the intention of aiding the model in

avoiding losing information present from the original input by adding the input to the out-
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put after non-linear transformations. It was first introduced to improve image recognition

tasks [43] but was later used in various models, including the Transformer. The Trans-

former uses layer normalization instead of batch normalization since layer normalization

aims to normalize data across each layer regardless of the batch size. It also ensures stable

statistics across sequences, making it well suited for the Transformer since it mostly deals

with long sequences of inputs, which are processed in parallel [41].

MHA is a critical component in the Transformer, allowing the model to simultane-

ously attend to different parts of the input sequence. MHA is computed by first calcu-

lating three vectors: query (Q), key (K), and value (V ). These vectors are computed

from the input (X) through learned weight matrices. Specifically, the computation is as

follows: Q = XWQ, K = XWK , V = XW V , whereWQ,WK ,W V are learned weight

matrices. The scaled dot-product attention, as shown in Figure 2.4, is then computed as

Attention(Q,K, V ) = Softmax(QKT/
√
dk)V , where dk is the dimension of the key vec-

tors and serves to normalize the dot product of Q and K.

In self-attention, a crucial mechanism in the Transformer, the queries, keys, and val-

ues all come from the same source sequence. This allows the model to weigh the impor-

tance of each token in the sequence relative to every other token, enabling it to attend to dif-

ferent parts of a single input sequence to compute its representation. MHA extends this by

projecting the queries, keys, and values into multiple subspaces (or heads) and performing

the attention operation in parallel:: headi = Attention(QWQ
i , KWK

i , V W V
i ). Finally, the

outputs of these parallel attention heads are concatenated and linearly transformed to pro-

duce the final output of theMHAblock: MHA(Q,K, V ) = Concat(head1, . . . , headh)WO,

where WO is another learned weight matrix. The diagram for computing multi-head at-

tention is shown in Figure 2.5.
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Figure 2.4: Scaled dot-product attention with optional masks to selectively ignore specific
positions in the input sequence [22].

The FF sub-block in the original implementation of the Transformer [22] consists

mainly of an FC network. In the Transformer, the FF sub-block consists of two linear

transformations, followed by a ReLU activation in between as represented by the equation:

FFN(x) = max(0, xW1 + b1)W2 + b2. Here, x is the input,W1 andW2 are weight matri-

ces, and b1 and b2 are bias vectors. The ReLU activation function ensures non-linearity by

outputting zero for negative values and the input itself for positive values. These mecha-

nisms in the Transformer’s encoder block allow the model to capture different aspects of

the input sequence by attending to various positions in multiple ways, enriching the input

representation.
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Figure 2.5: Multi-head attention with several ’h’ attention layers running in parallel [22].

The decoder block of the Transformer introduces an additional sub-block compared

to the encoder block, specifically a thirdMHA sub-block that attends to the output from the

encoder block. This is in addition to the two sub-blocks present in each encoder block:

the MHA sub-block and the FF sub-block. The most notable difference in the decoder

block is its use of masking in the new self-attention sub-block. This masking prevents

the decoder from attending to subsequent positions in the sequence. The intuition behind

this is to ensure that the model does not ”peek ahead” to future tokens when predicting

the next token in a sequence. This is crucial for tasks like language generation, where the

decoder must generate tokens sequentially and should only rely on the tokens that have

20

http://dx.doi.org/10.6342/NTU202403906


doi:10.6342/NTU202403906

already been generated. Thus, the masked self-attention sub-block ensures that the model

can only consider the tokens that precede it at each position, maintaining the sequence

generation’s causal nature.

2.3 Evaluation Metrics

The metrics to be used throughout this study for evaluating the proposed model are as

follows: accuracy, the area under the receiver operating curve (AUROC), the area under

the precision-recall curve (AUPRC), and the F1 measure. These metrics have been chosen

to evaluate the results of a binary classification problem, where classes are either positive,

class 1, or negative, class 0. The results can be interpreted with true positives (TP), false

positives (FP), true negatives (TN), and false negatives (FN), where TP are the positive

samples that have been correctly predicted, FP is the positive samples that have been

incorrectly predicted, TN are the negative samples that have been correctly predicted, and

FN is the negative samples that have been incorrectly predicted. In this section, we will

give a general overview of each metric and how it is interpreted.

Accuracy is one the most straightforward ways to evaluate a machine learning model,

where Accuracy = TP+TN
TP+FP+TN+FN

. This metric aims to calculate the number of correct

predictions over the total number of samples. However, this metric doesn’t take into con-

sideration class imbalances. For instance, if the number of negative samples in the study

is too small, then it will put more weight on the positive samples.

AUROC [44] is the resulting area below the curve when the true positive rate (TPR)

is plotted against the false positive rate (FPR), where TPR is calculated as TPR = TP
(TP+FN)

and FPR is calculated as FPR = FP
(FP+TN)

. This metric evaluates the degree of separability
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among the two classes in a binary problem. The baseline for evaluating AUROC is at 0.5,

where an AUROC of 0.5 is predicted by chance, and an ideal AUROC would be valued

as close as possible to 1.0.

AUPRC [45] is the resulting area below the curve when the precision is plotted

against the recall. Precision, which is the ratio of correctly predicted samples from the

positive classes, is computed as TP
(TP+FP )

. Recall, which measures a model’s capability

of predicting positive classes, is computed as TP
(TP+FN)

. Since AUPRC is the resulting

area below the curve resulting from these two metrics, it is generally not dependent on

the balance between the two classes, unlike the other metrics. However, when dealing

with heavily class-imbalanced datasets, it is important to find the optimized baseline of

the AUPRC to understand the true performance of the model. The equation for comput-

ing the optimized baseline is by computing the ratio of positives over the entire dataset,

TP+FN
TP+TN

. AUPRC values above the baseline are considered good, and the best AUPRC

would be a value as close as possible to 1.0.

F1 measure is another metric used to measure the harmonic mean between preci-

sion and recall and is computed with TP
TP+ 1

2
(FP+FN)

. In highly class-imbalanced datasets,

the threshold for computing predictions is often adjusted to maximize F1 measure perfor-

mance [46]. This means that instead of the default prediction threshold, where prediction

probabilities above 0.5 are classified as 1 and prediction probabilities below 0.5 are clas-

sified as 0, this decision threshold is adjusted to obtain the best F1 measure during model

training. This optimized threshold is then used during model evaluation.
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2.4 Model Selection

In machine learning, the optimal model is typically chosen by maximizing its perfor-

mance on a validation set and conducting a final evaluation using a test set. This process

initially divides the dataset into training, validation, and test sets. The model is trained on

the training set, and various sets of model parameters are evaluated using the validation

set to determine the best parameters. These selected parameters are then used to train the

final model. Finally, the test set is employed to provide a definitive assessment of the

model’s generalizability.

A more structured method for model selection involves cross-validation, as shown in

Figure 2.6. In cross-validation, the dataset is divided into k folds. During each iteration,

the model is trained on k−1 folds and evaluated on the remaining fold. This process is

repeated k times per epoch, as depicted with each split in the diagram, with a different fold

used as the validation set in each run. The average validation loss across all folds is then

used to assess the model’s performance. Unlike traditional approaches, cross-validation

eliminates the need for a separate validation set, treating the entire dataset both as training

and validation data.

2.5 PhysioNet Challenge 2023 Dataset

For the 2023 George B. Moody PhysioNet Challenge [7, 8], the International Car-

diac Arrest Research Consortium (I-CARE) [9] gathered comatose cardiac arrest patients’

data from seven hospitals across the US and Europe, which is summarized in Table 2.1.

Overall, the dataset consists of 1020 patients, where 60% of the dataset was used as the
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Figure 2.6: Sample diagram of cross-validation, where the training dataset is split into 5
folds for training and validation.

Table 2.1: 7 hospitals from the US and EU gathered by I-CARE.

Hospital Country
Rijnstate Hospital Arnhem, The Netherlands
Medisch Spectrum Twente Enschede, The Netherlands
Erasme Hospital Brussels, Belgium
Massachusetts General Hospital Boston, Massachusetts, USA
Brigham and Women’s Hospital Boston, Massachusetts, USA
Beth Israel Deaconess Medical Center Boston, Massachusetts, USA
Yale New Haven Hospital New Haven, Connecticut, USA

training set, 10% as the hidden validation set, and 30% as the hidden test set. Patients in

the dataset are either in-patient or out-patient. Only 5 hospitals were released as part of the

open-source training set for 607 patients, with the remaining 2 hospitals only available as

part of the hidden validation and test sets. All hospital names were de-identified to protect

patient privacies, and the distribution of hospitals is shown in Figure 2.7. In this study,

the entire publicly available training set was further split and used to train and evaluate

the model since the hidden validation and test sets are not publicly available. Then, an

external dataset from NTUH was further used to test if the model can generalize well to a

new unseen dataset.

This dataset comprised clinical data and signal channels, categorized into different
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Figure 2.7: Distribution of hospitals among each patient in the PhysioNet dataset.

groups, such as EEG, ECG, REF (reference channels), AND OTHER, as shown in Table

2.2. The abbreviations for the EEG channels, which are based on the electrode’s place-

ment position in the human scalp, are summarized in Table 2.3. The clinical data in this

dataset included the patient’s age, sex, hospital, return of spontaneous circulation (ROSC,

in minutes), out-of-hospital cardiac arrest (OHCA, true/false), shockable rhythm (true/

false), targeted temperature management (TTM, in Celsius) at 33, 36, or NaN for no TTM,

outcome, and Cerebral Performance Category (CPC).

CPCs were obtained 3 to 6 months from ROSC via phone interview or chart review.

CPC is a widely known 5-point scale used to assess cognitive recovery. A CPC scale

of 5 means death, 4 as persistent vegetative state, 3 as severe disability, 2 as moderate

disability, and 1 as good recovery [47]. Outcomes were labeled as good (class 0) for CPC
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Table 2.2: Channels available in the PhysioNet dataset.

Channel Group Channels
EEG Fp1, Fp2, F7, F8, F3, F4, T3, T4, C3, C4, T5, T6, P3, P4, O1, O2,

Fz, Cz, Pz, Fpz, Oz, F9
ECG ECG, ECG1, ECG2, ECGL, ECGR
REF RAT1, RAT2, REF, C2, A1, A2, BIP1, BIP2, BIP3, BIP4, Cb2, M1,

M2, In1-Ref2, In1-Ref3
OTHER SpO2, EMG1, EMG2, EMG3, LAT1, LAT2, LOC, ROC, LEG1,

LEG2

Table 2.3: EEG Channels Abbreviations.

Channel Label Description
Fp1 Frontal Pole 1
Fp2 Frontal Pole 2
F7 Frontal Lobe 7
F8 Frontal Lobe 8
F3 Frontal Lobe 3
F4 Frontal Lobe 4
T3 Temporal Lobe 3
T4 Temporal Lobe 4
C3 Central 3
C4 Central 4
T5 Temporal Lobe 5
T6 Temporal Lobe 6
P3 Parietal Lobe 3
P4 Parietal Lobe 4
O1 Occipital Lobe 1
O2 Occipital Lobe 2
Fz Midline Frontal
Cz Midline Central
Pz Midline Parietal
Fpz Midline Frontal Pole
Oz Midline Occipital
F9 Frontal Lobe 9
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Figure 2.8: Patient outcome class distributions of the PhysioNet dataset (left) and NTUH
dataset (right). Class 0 represents good outcomes, while class 1 denotes bad outcomes.

values of 1 and 2 and bad (class 1) for CPC values of 3, 4, and 5. These outcomes and

CPC serve as the ground truth labels for the dataset. Our study only focuses on training

our model with the outcomes as the primary label.

The outcomes class distribution per patient is shown in Fig. 2.8 and we compare it

side-by-side with the class distribution from the NTUH dataset, which will be discussed

in more detail in the next section. Here, it is evident that there are more patients with

bad outcomes (class 1) compared to good outcomes (class 0) in both datasets. Each pa-

tient had their EEG and other signal channels recorded hourly after ROSC. Some patients

recorded their continuous EEG immediately, while others started later or had to stop at

certain hours due to external factors and patient conditions. Fig. 2.9 shows the distribu-

tion of hours when each hourly EEG recording was taken for all patients in the training

set. Furthermore, each hourly EEG recording had differing lengths as some EEG started

later for certain hours or had to terminate earlier before the hour ended.
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Figure 2.9: EEG recordings’ hourly distribution from the PhysioNet dataset.

2.6 NTUH Dataset

The NTUH dataset, which was used in a former study [48], is a private dataset that

was collected from the National Taiwan University Hospital. This dataset will be used

as an external test set to evaluate the generalizability of our model. It consists of 75 co-

matose patients who had been resuscitated following cardiac arrest and had been comatose

between 2013 and 2017 in the ICU of NTUH. Twelve patients were defined as good out-

comes, with a CPC scale of 1 and 2, and sixty-three patients were defined as bad outcomes,

with a CPC scale of 3, 4, and 5. This class distribution, as shown in Figure 2.8, shows an

ideal clinical scenario where the bad-outcome patients will always outnumber the good-

outcome patients because most coma patients eventually end up with bad outcomes in

real-life clinical scenarios.

Contrary to how the dataset from the PhysioNet challenge was collected, the EEG
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recordings here were collected in a standard EEG room due to facility limitations. EEG

data and various clinical data such as demographics and protocols like TTMwere collected

from each patient. The dataset contains the following EEG channels: F4-A2, C4-A2, P4-

A2, O2-A2, F3-A1, C3-A1, P3-A1, O1-A1, F8-A2, T4-A2, T6-A2, F7-A1, T3-A1, T5-

A1, X4-X3, Fp1-A1, Fp2-A2, Fz-A1, Pz-A1, Cz-A1. Notably, the channels all reference

the A1 and A2 REF electrodes. The EEG data were all collected with a sampling rate of

200 Hz and during the 3rd and 7th day after ROSC.
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Chapter 3

Methods

3.1 Study Design

In this study, we used all EEG recordings from the first 80% of the patients in the

publicly available PhysioNet dataset, 485 patients, to train the model. The remaining

recordings from the last 20% patients, 122 patients, were used as the holdout test set to

evaluate the chosen model from cross-validation during model training. The resulting

class distribution of the training set is shown in Figure 3.1, with a ratio of 39.38% for

class 0 (good outcomes) and 60.62% for class 1 (bad outcomes). The ratio of this training

set split resembles the original class distribution of the full public dataset at 37.07% to

62.93%.

This study focuses on only EEG, so all the other channels and clinical data available

in the public dataset were not used. Overall, a total of 19 EEG channels were carefully

selected to match both the PhysioNet datasets and the NTUH dataset since they are the

channels present in both datasets. The 19 channels are: F4, C4, P4, O2, F3, C3, P3, O1,

F8, T4, T6, F7, T3, T5, Fp1, Fp2, Fz, Pz, and Cz. Following the superior predictive
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Figure 3.1: Class distribution of outcome labels in the PhysioNet training set (80% split).

capabilities of early EEG as shown in previous studies [10, 11, 49–51], we chose to use

only the first 72 hours of EEG recordings. This conveniently coincides with the study’s

goal of aiding clinicians with patient prognosis at the 72-hour mark after ROSC [4].

We used entire hour-long EEG recordings, split into multiple time steps, to train and

evaluate our model. However, the model we used, the Transformer, is a computation-

ally expensive time-series model. Thus, to make use of the entire hour-long recordings,

we first extracted clinically interpretable QEEG features, particularly power spectral den-

sities (PSD) among frequency band–δ (0.1 to 4.0 Hz), θ (4.0 to 8.0 Hz), α (8.0 to 12.0

Hz), and β (12.0 to 30.0 Hz) from each channel, since previous studies [31–34] have uti-

lized only PSD features to represent their EEG sequences and have achieved promising

results. We extracted these QEEG features at every step of each EEG sequence. For fea-

ture selection, we opted to only use PSD features to maintain simplicity and consistency
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in our analysis. This is to avoid the additive noise and complexity that might result from

combining different types of features as what previous studies did [10, 13, 18].

Our study mainly differs from previous studies, particularly from the challenge [27–

30], through the following changes. First, the previous studies used multimodal data to

train their models, one [29] using both EEG and clinical data, and another [30] using both

EEG and ECG to train their models. In this study, we focused on training our proposed

model solely with EEG.

Second, the previous studies all focused on patient-wise training for their models,

using only 1 data per patient. In this study, we used each EEG recording as a training

sample, regardless of the patient fromwhich it came. However, the model is still evaluated

using patient-wise predictions. This is done by aggregating the predictions from each

recording of every patient through global average pooling (GAP). This approach of using

recording-wise samples allows us to increase our sample size, enhancing performance.

The Transformer benefits significantly from larger datasets, as it can learn better attention

weights with the addition of more data. Moreover, it also helps the model learn recording-

wise patterns, allowing it to generalize unseen data better, regardless of recording time.

Figure 3.2 shows our proposed method of training our model recording-wise (left side)

rather than the traditional way of patient-wise (right side) model training.

Another advantage of using recording-wise training was that we were able to balance

out the class distribution of the dataset used to train our model. Figure 3.3 shows the class

distribution of the outcome labels from each EEG recording. Here, we can observe a more

balanced distribution of classes that may allow the model to learn better patterns from each

class more equally.
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Figure 3.2: Our proposed recording-wise training vs. traditional patient-wise training
method.

Figure 3.3: Class distribution of individual EEG recordings in the PhysioNet training set

Third, instead of subsampling a random5-minute epoch from each continuous hour of

EEG as what the previous studies [27, 28] did, we used full sequences of hour-long EEG

recordings, segmented into 5-minute epochs. We hypothesize that this approach would
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Figure 3.4: Maximizing attention-wise learning by using entire sequences (lower left),
compared to traditional random epoch selection (lower right).

allow our model to learn better attention weights and make more accurate predictions by

capturing temporal patterns across time steps from the entire continuous EEG recordings

rather than local patterns within a subsampled epoch. Figure 3.4 shows a side-by-side

comparison of our proposed method of using entire sequences with the traditional method

of processing EEG using a subsampled epoch from the sequence.

3.2 Signal Processing and Feature Extraction

Following the study design, we used a total of 20129 EEG recordings from the first

485 patients to train our proposed model. Each EEG recording, captured within 72 hours

after ROSC, was collected and treated as independent data. We utilized the 19 EEG chan-

nels selected from the study design. The recordings were divided into multiple 5-minute

epochs, which served as the time steps or tokens for our Transformer-based model.

We used the MNE library [52] to perform signal processing on our EEG sequences.
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Signal processing [53] is crucial because continuous EEG signals are large and extremely

noisy. However, since this study focused on experiments involving the Transformermodel,

we performed only basic signal-processing steps. These steps are designed to carefully re-

move unwanted frequencies and general channel-wise and recording-related artifacts.

Bad 5-minute epochs were automatically dropped by the MNE library. Then, band-

pass filtering of [0.1, 30] Hz was used to filter out the unwanted frequencies. 30 Hz was

used as the low-pass filter since this study used EEG signals from coma patients, where

frequencies above 30 Hz, γ frequency, are generally unwanted frequencies. These signals

represent high cognitive processes that are absent in coma patients.

Then, the EEG recordings were resampled from the original sampling rate of 500 Hz

to 128 Hz. This step is intended to reduce computational load and storage requirements

while retaining the essential information needed for analysis. Resampling simplifies the

data without significantly compromising signal quality, making it more manageable for

processing and model training. According to the sampling theorem, “A signal can be ex-

actly reproduced if it is sampled at a frequency greater than twice the maximum frequency

present in the signal [54].” Given that the maximum frequency in the EEG signals is only

30 Hz, a resampling rate above 60 Hz (2 * 30 Hz) can accurately reproduce the original

signal. Thus, resampling to 128 Hz ensures that we do not lose important data crucial for

the model to learn from.

Afterward, the EEG signals were normalized to values from –1 to +1. This step

is to ensure the normalized signals are all on a common scale. Additionally, because it

centers the signal around zero, it helps obtain more accurate spectral estimates since the

next step after this is extracting spectral features. Figure 3.5 summarizes the entire signal-
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Figure 3.5: Signal processing pipeline.

processing pipeline.

The next step after signal processing is feature extraction, which is summarized in

Figure 3.6. The PSD was computed from every channel in each 5-minute epoch within

each EEG sequence and was further split into frequency bands–δ (0.1 to 4.0 Hz), θ (4.0 to

8.0 Hz), α (8.0 to 12.0 Hz), and β (12.0 to 30.0 Hz). The process involves transforming

the time-domain samples first into the frequency-domain by using fast Fourier transform

with Welch’s method [55]. The resulting frequency-domain samples have the same length

as the original time-domain samples. The average power for each frequency band per

channel was then calculated to serve as the QEEG features for the 5-minute epoch. Fi-

nally, the mean PSD features for each frequency band per channel were concatenated

into a single feature vector, totaling 76 quantitative EEG features (19 EEG Channels ×

4 Frequency Bands × 1 mean PSD = 76 features) which represents the EEG feature of

the corresponding 5-minute epoch within each EEG sequence. These features were sub-

sequently used as the input for our model.

The same signal-processing steps were used for both training and test sets, includ-

ing the PhysioNet and the NTUH datasets. However, it must be noted that the NTUH

dataset utilized EEG channels referenced to REF electrodes, and the specific voltages

used for these REF electrodes are not available. Therefore, we performed average re-
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Figure 3.6: Feature extraction pipeline.

referencing [56] to reduce the contribution of common noise or artifacts that affect all

channels similarly. Average re-referencing is a method wherein the average voltage across

each channel is subtracted from each channel to approximate the original voltages for each

channel. The first step in average re-referencing is to first calculate the average voltage

across each channel by Vavg =
1

N−1
ΣN

i=1Voriginal(i), where Vavg is the average voltage, N

is the total number of EEG channels, and Voriginal(i) is the original voltage at channel i.

Then, average re-referencing per channel can be computed as Vnew(i) = Voriginal(i)−Vavg,

where Vnew(i) is the new voltage at channel i after re-referencing, Voriginal(i) is the original

voltage at channel i, and Vavg is the average voltage.

3.3 Preparation of EEG Time-Series Data

In cases where recordings were shorter due to pauses or discontinuations caused by

clinical factors, the missing 5-minute epochs were padded with zeros. For instance, if a

recording started later within an hour, such as 20 minutes into the hour, the first four 5-

minute epochs were padded with zeros. Conversely, if a recording started at the beginning

of an hour but ended early, zero padding was applied after the recorded data.
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Figure 3.7: Diagram showing how zero padding was used to fill in the missing earlier
epochs of an EEG recording that started 10 minutes late, along with a computed padding
mask vector.

For instance, when a recording was stopped and resumed within the same hour, the

two segments were simply concatenated, as they represent continuous data from the same

hour. This careful preparation of time-series patterns in the EEG sequences ensures that

the hourly EEG sequencesmaintain their realistic time steps and accurately reflect the tem-

poral dynamics of the recorded brain activity, providing a robust foundation for training

the Transformer model.

Padding masks were computed for each EEG sequence to aid the model in avoiding

learning from zero-padded epochs by assigning lower attention weights to the zero-padded

ones. All padded epochs will be assigned True to indicate that they were zero-padded,

while the epochs that contain EEG samples will be assigned False. The resulting dimen-

sion of the padding masks is (n_recordings, n_masks), where n_recordings is the number

of EEG recordings and n_masks is the same length as the number of epochs per recording

since it serves as their masks. Figure 3.7 shows an example diagram for processing an

EEG sequence that started recording after 10 minutes. Zero padding was applied to the

first two missing epochs, and the computed padding mask vector is shown to contain True

values for the zero-padded epochs.

Following these steps, the resulting dimension of our dataset is (n_recordings, n_epochs,

38

http://dx.doi.org/10.6342/NTU202403906


doi:10.6342/NTU202403906

n_features), where n_epochs is the number of 5-minute epochs within each recording and

n_features is the number of features in each epoch. Prior to model training, the PSD fea-

tures for all data were normalized to values from 0 to +1 through a min-max scaler. This

was done to enhance convergence speed and numerical stability during model training.

The same preparation steps were used for both training and test sets, including the

NTUH dataset. Both training and test sets had no missing values since bad epochs were

automatically dropped. Additionally, the same scaler fitted with the training set was used

to transform all test sets to prevent data leakage.

3.4 Model Training

Our proposed model, shown in Figure 3.8, consists of the Transformer’s encoder

block [22] to output embeddings through learned attention-weights, followed by GAP to

aggregate the time step embeddings, then FC layers to aggregate the embedding vector

into a final prediction output. The model is trained for multiple epochs and in batches of

inputs through cross-validation.

Each EEG sequence is treated as an input sequence to the Transformer encoder, with

the 5-minute epochs serving as the tokens, representing the time steps for the model. The

input dimension to the model is (n_batch, n_recordings, n_epochs, n_features), where

n_batch is the batch size used for training, n_recordings is the number of EEG recordings,

n_epochs are the time step tokens, and n_features are the extracted EEG features used as

the input.

Prior to the Transformer encoder, the EEG features are first encoded into embeddings

through a linear embedding layer. Then, positional encoding, computed using sinusoidal
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Figure 3.8: Our proposed Transformer-based [22]model architecture for downstream clas-
sification of EEG features to prediction outputs.

functions (sine and cosine functions of different frequencies) as described in the original

implementation [22], is added to the input to allow the model to learn temporal dependen-

cies within each token through their positions in the sequences.

The Transformer encoder can be divided into the MHA sub-block and the FF sub-
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block. To compute self-attention in the MHA block, the query, key, and value vectors all

take the same embedding as their input. MHA is then computed usingMHA(Q,K, V ) =

Concat(head1, . . . , headh)WO, where each head computes parallel attention along the to-

kens in each sequence through Attention(Q,K, V ) = Softmax(QKT/
√
dk)V . The final

step in this sub-block consists of the residual layer where the embedding prior to the MHA

block is added back to the new output embedding from MHA, followed by layer normal-

ization. The computed padding masks from the preparation step were used here in the

MHA sub-block to aid the model in assigning lower attention weights to the padded to-

kens. The resulting embedding of the same dimension as the original embedding prior to

MHA is then passed to the FF sub-block. Please refer to 2.2 for a more detailed explana-

tion of MHA computation.

The FF sub-block takes the output embedding from the MHA sub-block as the input.

Within this sub-block, an expansion layer increases the dimensionality, followed by a

ReLU activation and a dropout layer. Then, a contraction layer reduces the dimensionality

back to the original size. A residual connection adds the sub-block’s input embedding to

the sub-block output. Finally, layer normalization is applied to the resulting embedding.

The resulting embedding from the Transformer encoder block consists of the learned

embeddings of the same dimensions as the original input batch, that is (n_batch, n_recordings,

n_epochs, n_embedding), where n_embedding represents the learned embedding of the

same size as the original input embedding prior to MHA. Afterward, GAP is performed

along the epochs or tokens for each sequence in the batch. Through the computed padding

masks from the preparation steps, the padded tokens are carefully omitted during the cal-

culation of GAP to ensure that only the embeddings from the actual EEG features are used

to calculate the average embedding for each sequence. After the epochs are aggregated
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through GAP, the resulting dimension is (n_batch, n_recordings, n_embedding), where

each recording will now only have one embedding.

Then, the resulting batch of outputs is passed to the FC block that consists of 3 con-

traction layers to eventually leave a single output for each EEG sequence. Finally, the sig-

moid activation function transforms the outputs of each sequence into probabilities, result-

ing in a final output dimension of (n_batch, n_recordings, pred_prob), where pred_prob

is the recording-wise prediction probability for each recording in the batch.

The final step in model training is to aggregate the recording-wise predictions, col-

lected from the validation folds during cross-validation, into patient-wise predictions to

obtain meaningful model evaluations. After every training epoch, the recording predic-

tions from each patient are collected and averaged to obtain the aggregated patient-wise

predictions. Then, the chosen metrics, AUROC, AUPRC, accuracy, and F1 measure, are

used to evaluate the model through these predictions.

Since the datasets are highly imbalanced, as shown in Figure 3.1, the optimal thresh-

old for classifying prediction probabilities is adjusted. This means that instead of using the

default prediction threshold, where prediction probabilities above 0.5 are classified as an

outcome of 1, and those below are classified as 0, this threshold is adjusted by maximiz-

ing the F1 measure. The optimized threshold is used to obtain the patient-wise predictions

and is used to calculate both the accuracy and F1 measure. This same optimized threshold

from the chosen model is used as the prediction threshold during model evaluations with

the test sets.
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Table 3.1: Grid search hyperparameters space.

Hyperparameter Trials
batch_size 16, 32, 64
num_layer 2, 3, 4, 5, 6
dropout 0.2, 0.3, 0.4, 0.5
embedding 32, 64, 128
num_heads 8, 16, 32
learning_rate 0.001, 0.0001, 0.00001
optimizer Adam, RMSProp, AdamW, NAdam, RAdam
loss_function BCELoss, BCEWithLogitsLoss
scheduler_step_size 50, 100

3.5 Experimental Setup

The proposed model was trained using cross-validation with k=5 across the entire

training set. The final model is chosen through early stopping criteria, defined as when

the patient-wise results’ AUPRC from the validation results has not improved beyond the

current best AUPRC for 10 consecutive epochs. AUPRC was chosen as the main metric

for early stopping criteria since it is the metric among the chosen ones that is most suited

to evaluate models trained with highly imbalanced datasets.

A careful search of hyperparameters was performed through grid search. Table 3.1

shows the hyperparameters grid searching range used in this study. Here, batch_size is

the number of recordings used in each training batch, num_layer is the number of stacked

Transformer encoder layers, dropout is the dropout rate used throughout the model, em-

bedding is the embedding dimension used in the linear embedding layer, and num_heads

is the number of heads used in MHA computation. To avoid overfitting, we introduced

a scheduler to decay the learning rate after every number of epochs, determined by the

scheduler_step_size.

Our optimized model had the following hyperparameters (highlighted in Table 3.1),
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Table 3.2: Platform and libraries detail.

Platform or Library Version
CPU Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz
Memory 48GB
GPU GeForce GTX 1180 with 8GB VRAM
CUDA version 11.4
mne version 1.4.2
PyTorch version 2.0.1
scikit-learn version 1.3.0
numpy version 1.22.0
joblib 1.3.1

with the batch size of 16, number of layers for the Transformer encoder at 3, the dropout

rate at 0.4, 64 embedding size, 8 heads, learning rate of 0.0001, Adam optimizer, BCE

(Binary Cross Entropy) as the loss function, and scheduler_step_size of 50. We trained

the model for 200 epochs, where early stopping criteria were triggered at 125 epochs. Fi-

nally, Table 3.2 shows the platforms and libraries used to train the proposed model. The

models were trained using PyTorch [57], and the data preparation steps prior to model

training were performed with Numpy [58]. All experiments were performed with a ran-

dom seed of 15 for both PyTorch and Numpy’s random seeds to ensure reproducibility of

the experiments for future studies.
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Chapter 4

Results and Discussions

4.1 Experiments Using 80% Training Set

4.1.1 Main Results

In our main experiment, we used the recordings from the first 80% patients from the

publicly available PhysioNet dataset to train the proposed model. Using the experimental

setup as defined in 3.5, we evaluated it with the recordings from the last 20% patients from

the PhysioNet dataset and the external NTUH dataset. Table 4.1 shows the results when

evaluated with both the PhysioNet test set and the NTUH dataset.

Here, we can observe very high metrics when evaluated with the PhysioNet test set,

with 0.82 AUROC, 0.90 AUPRC, 0.73 accuracy, and 0.79 F1 measure. We can also ob-

serve promising results when evaluated with the NTUH dataset, with 0.65 AUROC, 0.90

AUPRC, 0.74 accuracy, and 0.84 F1 measure. The optimized threshold for the predic-

tions was at 0.55 and was used consistently during the evaluations with both datasets. The

poorer performance of the NTUH dataset, compared to the PhysioNet test set, is as ex-
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Table 4.1: Results from 80% PhysioNet training set.

Metric PhysioNet Test Set NTUH Dataset
AUROC 0.82 0.65
AUPRC 0.90 0.90
Accuracy 0.73 0.74
F1 measure 0.79 0.84

Figure 4.1: ROC (left) and PRC (right) curves when evaluated with the PhysioNet test set
using the model trained with 80% training set.

pected since external test sets are meant only to evaluate a model’s generalizability, and

it is enough that the model can perform well.

Figure 4.1 shows the ROC (left) and PRC (right) curves when the model trained with

the 80% training set was used to evaluate the PhysioNet test set, with an AUROC of 0.82

and AUPRC of 0.90. The AUPRC baseline was optimized at 0.72, which shows that

the model performed very well on this test set, as the AUPRC is significantly above the

baseline.

Figure 4.2 shows the ROC (left) and PRC (right) curves when the model was evalu-

ated with the NTUH test set, with an AUROC of 0.65 and an AUPRC of 0.90. Here, the

AUPRC baseline was optimized at 0.84, which shows that the model still performed well

as the AUPRC is above the baseline.
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Figure 4.2: ROC (left) and PRC (right) curves when evaluated with the NTUH dataset
using the model trained with 80% training set.

4.1.2 Model Evaluation at Different Hour Windows

We sought to understand how our trained model works when evaluated at certain

hour windows - 12 hours, 24 hours, 48 hours, and 72 hours, to know whether the model

can still perform well when evaluated only with earlier EEG recordings. This means that

we tested our model with recordings from the PhysioNet test set only within 12 hours, 24

hours, 48 hours, and 72 hours for each evaluation. Figure 4.3 shows the AUROC results

when evaluated with recordings at certain hour windows.

The results, when evaluated with all recordings within 72 hours, are as expected since

this evaluation uses more EEG recordings. Consequently, more recording predictions are

considered when aggregating the patient-wise predictions, leading to the highest AUROC

performance. This also highlights the model’s clinical relevance as physicians are tasked

to perform patient prognoses only after 72 hours, so they can easily use this model to aid

them in their task. The model’s best performance at this mark reinforces its reliability and

suitability for clinical use in this critical time frame.
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Figure 4.3: AUROC from model evaluation at each hour threshold for the PhysioNet test
set.

The model generally performed well when evaluated at all hour windows, with AU-

ROC of 0.80, 0.77, 0.81, and 0.82 when evaluated at 12 hours, 24 hours, 48 hours, and 72

hours, respectively. This experiment confirms that the model has a comparable predictive

capacity at earlier and later time points, with all AUROCs remaining above 0.77.

Interestingly, the model had a slight decrease in AUROC when evaluated at 24 hours

compared to when it was evaluated at 12 hours. However, this slight decrease in perfor-

mance is not very significant, with only a 0.03 drop. The 0.80 AUROC, when evaluated at

12 hours, highlights the model’s overall robustness even when evaluated with only early

EEG recordings. This further shows that early EEG already provides clear and consistent

signals, rich with information, that allow the model to learn long-distance temporal pat-

terns through its attention mechanism. This, in turn, is useful in the clinical setting as it

may help facilitate effective early risk stratification.
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Figure 4.4: AUROC from the model evaluation on each hospital for the PhysioNet test
set.

4.1.3 Model Evaluation per Hospital

We further investigated how well our model performs when evaluated with record-

ings from each hospital in the PhysioNet test set. Each hospital has been anonymized into

alphabet letters to protect patient privacies, and two hospitals, hospitals C and G, were not

made available in the publicly available PhysioNet dataset. Figure 4.4 shows the AUROC

results when evaluated only with data from each hospital.

We can observe the highest AUROC of 0.85 from Hospital E, followed by 0.84 from

Hospital A. As shown in Figure 4.5, the hospital with the most patients from the 80% train-

ing set is Hospital A, so it is reasonable that this hospital would have a good performance

since most data comes from here. However, it is interesting that Hospital E had the best

performance, even outperforming Hospital A, despite having fewer patients. The ratio of

all the hospitals, as shown in Figure 4.5 across the training set, is as follows: Hospital A
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Figure 4.5: Hospital distribution per patient from the 80% PhysioNet training set.

with 42.27%, Hospital B with 20.62%, Hospital D with 14.02%, Hospital E with 11.96%,

and Hospital F with 11.13%.

Among the hospitals, Hospital B had the worst performance and was the only hospital

that had an AUROC below the 0.50 AUROC baseline. Future studies may focus on per-

forming more comprehensive analyses of the data from different hospitals to understand

the underlying causes of why the model performed worse and better at certain hospitals.

Overall, this experiment showed that certain hospitals contributed data that benefited our

proposed model more, aiding it to learn better patterns.
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Table 4.2: Comparison of RW and PW setups when evaluated with PhysioNet test set and
NTUH dataset.

Metric PhysioNet RW PhysioNet PW NTUH RW NTUH PW
AUROC 0.82 0.58 0.65 0.61
AUPRC 0.90 0.76 0.90 0.89
Accuracy 0.73 0.71 0.74 0.7866
F1 measure 0.79 0.81 0.84 0.88

4.2 Recording-wise vs. Patient-wise Samples

In this study, we utilized each EEG recording from all patients as individual training

data, regardless of which patient they come from. This diverges from previous studies,

especially those from the challenge [27–30], who trained and evaluated their models using

patient-wise samples. In this next experiment, we compare the results from our recording-

wise (RW) model training implementation to patient-wise (PW) model training. For the

PW setup, we only used the latest recording from every patient as a training sample, fol-

lowing the setup from our previous study [29] from the challenge. Table 4.2 presents a

side-by-side comparison of results from both setups when evaluated with the PhysioNet

test set and the NTUH dataset.

Comparing the two setups when evaluated with the PhysioNet test set, there was a

significant drop on both AUROC and AUPRC, with 0.82 to 0.58 and 0.90 to 0.76, when

evaluated with the RW and PW setups, respectively. The accuracy also experienced a

small drop from 0.73 to 0.71, while the F1 measure increased slightly from 0.79 to 0.81.

Similarly, when evaluated with the NTUH dataset, the AUROC and AUPRC from the

RW setup were higher than the results from the PW setup, at 0.65 to 0.61 and 0.90 to

0.89, respectively. This experiment shows the value of using recording-wise predictions

to train our model as the Transformer model, in particular, benefits well when trained with
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Table 4.3: Comparison of Full Hour and 5-minute setups when evaluated with PhysioNet
Test Set and NTUH Dataset.

Metric PhysioNet Full
Hour

PhysioNet
5-minute

NTUH Full
Hour

NTUH 5-
minute

AUROC 0.82 0.71 0.65 0.63
AUPRC 0.90 0.83 0.90 0.91
Accuracy 0.73 0.73 0.74 0.6266
F1 measure 0.79 0.80 0.84 0.75

more data as it can learn better attention weights through more samples and learn better

long-distance temporal dependencies across each EEG recording.

4.3 Full Hour vs. 5-minute EEG Samples

In this next experiment, we evaluated the proposed model, which was trained with

full hours of EEG, with the model trained with just 5-minute randomly sampled epochs

from each recording. This experiment intends to test our hypothesis that the Transformer’s

attention mechanism benefits well from using data from entire hourly recordings to learn

long-distance relationships among each epoch in every hour. To utilize the same exper-

imental settings for the 5-minute setup with the original setup, the randomly selected 5-

minute epoch was further subdivided into thirty 10-second epochs to provide the time step

tokens for the Transformer model. In the 5-minute setup, no padding mask was computed

since full 5-minute epochs were simply segmented into timesteps, and this will always

result in no missing epochs; hence, masking is no longer necessary. Table 4.3 shows the

side-by-side results of the two setups, Full Hour for the proposed setup and 5 minutes for

the setup, which uses only randomly selected 5-minute epochs from every recording.

The results demonstrate that the Full Hour setup outperforms the 5-minute setup in

terms of AUROC and AUPRC when evaluated with the PhysioNet test set, achieving
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scores of 0.82 versus 0.71 and 0.90 versus 0.83, respectively. There were no significant

differences in accuracy and F1 measure scores between the two setups. These findings

suggest that using full hours of EEG data, rather than a subsampled 5-minute epoch, al-

lows the model to maximize its attention mechanism to learn long-distance temporal re-

lationships among time step tokens across a full hour rather than just local temporal re-

lationships within a subsampled epoch. This is evidenced by the significant increase in

overall performance when using the Full Hour setup over the PhysioNet test set.

When evaluated with the NTUH dataset, the Full Hour setup had a 0.65 AUROC,

0.90 AUPRC, 0.74 accuracy, and 0.84 F1 measure, while the 5-minute setup had a 0.63

AUROC, 0.91 AUPRC, 0.62 accuracy, and 0.75 F1 measure. These results show that the

Full Hour setup generally performed better over the 5-minute setup, with the latter setup

only outperforming the former over the AUPRC. However, the difference of 0.01 for the

AUPRC was not very significant.

These close results, when evaluated with the NTUH dataset, maybe because the

NTUH dataset only contains short recordings that do not reach an hour, and almost all the

recordings had to be zero-padded for the Full Hour setup. Nevertheless, our main model,

Full Hour setup, could still generalize well to this external dataset despite the difference

in the number of time samples available for each recording.

These findings over the two test sets show that the Full Hour setup was superior over

the 5-minute setup, as it performed significantly better with the PhysioNet test set and

slightly better with the NTUH dataset.

A limitation of using full sequences of EEG recordings is that hospitals often cannot

collect numerous long, hour-long sequences due to facility constraints and other envi-
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Table 4.4: Comparison of GAP and GMP when evaluated on the two test sets

Metric PhysioNet
GAP

PhysioNet
GMP

NTUH GAP NTUH GMP

AUROC 0.82 0.80 0.65 0.53
AUPRC 0.90 0.90 0.90 0.88
Accuracy 0.73 0.72 0.74 0.50
F1 measure 0.79 0.78 0.84 0.65

ronmental factors. However, our comparison experiment results show that our proposed

model can still perform well even when evaluated with shorter recordings, showcasing its

promising clinical applications.

4.4 Ablation Study with Pooling Layer

One of the key layers in the model is the global average pooling (GAP) layer, which

aggregates the token embeddings into a final mean embedding for each EEG sequence

input. In this section, we perform an ablation study to evaluate how a different pooling

strategy might affect model performance. We trained another model using global max

pooling (GMP) instead of GAP to aggregate the token embeddings.

Table 4.4 presents a side-by-side comparison of the two models, evaluated using the

two test sets. On the PhysioNet test set, the GAP model generally outperformed the GMP

model, achieving an AUROC of 0.82 compared to 0.80, an accuracy of 0.73 compared to

0.72, and an F1 score of 0.79 compared to 0.781, while the AUPRC remained the same at

0.90. On the NTUH test set, the GAPmodel showed significantly better performance than

the GMP model, with an AUROC of 0.65 versus 0.53, an AUPRC of 0.90 versus 0.88, an

accuracy of 0.74 versus 0.50, and an F1 score of 0.84 versus 0.65.

These results demonstrate that the model using GMP performed reasonably well on
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the holdout test set but slightly underperformed compared to the GAP model. Specifi-

cally, while both models showed strong metrics on the PhysioNet test set, the GAP model

had marginally better AUROC, accuracy, and F1 scores. However, a notable difference

emerged when evaluating the models with the NTUH dataset. The GAPmodel maintained

good generalization, achieving respectable scores across all metrics, while the GMPmodel

showed a significant drop in performance, with the AUROC score indicating a perfor-

mance close to random chance.

This discrepancy suggests that the choice of pooling strategy has a substantial impact

on the model’s ability to generalize across different datasets. The findings support the cur-

rent study’s choice of utilizing GAP, as it computes the final embedding by averaging all

token embeddings, thereby giving equal weight to all tokens. This approach can capture

a more holistic representation of the input sequence. In contrast, GMP focuses only on

the highest values in the embeddings, potentially neglecting relevant but less prominent

features. As a result, GMP might be less robust in scenarios where important informa-

tion is distributed across many tokens rather than concentrated in a few. The consistency

in the GAP model’s performance across diverse datasets underscores the importance of

considering pooling strategies that maintain a comprehensive representation of the data,

particularly in complex domains like EEG analysis.
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Table 4.5: NTUH dataset results when trained with 80% training set compared to the entire
PhysioNet dataset.

Metric 80% Training Set Entire Dataset
AUROC 0.65 0.73
AUPRC 0.90 0.93
Accuracy 0.74 0.70
F1 measure 0.84 0.80

4.5 Training with Entire PhysioNet Dataset

4.5.1 Evaluation with NTUH Dataset

In this next experiment, we compared the results when the model is trained with the

entire publicly available PhysioNet dataset (607 patients) with the original setup of being

trainedwith the 80% training set split (485 patients). It is intuitive that with evenmore data

used for training, the model should perform better on the external NTUH dataset. Table

4.5 shows the results of both setups when evaluated with the NTUH dataset. Notably,

the model trained with the entire dataset uses a different optimized prediction threshold at

0.62 compared to the threshold of 0.55 for the 80% split model.

These results show a significant increase in AUROC from 0.65 to 0.73 when evalu-

ated with the model trained with the entire dataset. The AUPRC also had a slight increase

from 0.90 to 0.93. Both accuracy and F1 measures decreased when evaluated with the

entire dataset, but the difference wasn’t very significant. Overall, the model trained with

the entire dataset performed better than the external NTUH dataset. Figure 4.6 shows the

ROC (left) and the PRC (right) curves when the model trained with the entire dataset was

used to evaluate the NTUH dataset.

We investigated the amount of correctly and incorrectly predicted positive and neg-

56

http://dx.doi.org/10.6342/NTU202403906


doi:10.6342/NTU202403906

Figure 4.6: ROC (left) and PRC (right) curves when evaluated with the NTUH dataset
using the model trained with the entire publicly available PhysioNet dataset.

ative samples through a confusion matrix, where positive samples are the class 1 samples

or bad outcomes, while negative samples are the class 0 samples or good outcomes. The

confusion matrix is a useful plot for analyzing the amount of TN (upper left), FN (upper

right), FP (lower left), and TP (lower right). Figure 4.7 shows the confusion matrix ob-

tained from the prediction results of the NTUH dataset when evaluated with the Entire

Dataset model.

Through the confusion matrix, we can observe 8 true negatives and 4 false negatives,

indicating that the model correctly predicted 8 out of 12 samples among the negative class

samples, which shows an accuracy of 0.66 over the negatives. For the positive samples,

we can observe 45 true positives and 18 false positives, indicating that the model correctly

predicted 45 out of the 63 samples among the positive class samples, which shows an accu-

racy of 0.68 over the positives. These findings show that the model was able to distinguish

the samples among the two classes very well despite the evident class imbalance, as it was

able to predict more correct samples than incorrect samples in each class.

The sensitivity and specificity obtained from these results are 0.92 and 0.31, respec-
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Figure 4.7: Confusion matrix from the prediction results of NTUH dataset when trained
with the entire publicly available PhysioNet dataset.

tively. This disparity in metrics reflects the class imbalance present in the dataset, with

a scarcity of negative cases. Due to this imbalance, specificity alone does not provide a

comprehensive understanding of the model’s performance on negative cases, as there are

very few instances of these. However, the primary concern of this study is the accurate

identification of positive cases or bad outcomes, as our goal is to minimize the number of

patients incorrectly predicted to have bad outcomes. Therefore, sensitivity, which is 0.92,

maybe a crucial metric in evaluating the final model’s clinical interpretability. The high

sensitivity indicates that the model is effective at identifying true positive cases, which is

vital in this context.
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Figure 4.8: NTUH dataset distribution of prediction probabilities vs. true labels for the
model trained with the entire PhysioNet dataset.

We plotted the prediction probabilities with the true labels from the model trained

with the Entire Dataset when evaluated with the NTUH dataset to visualize how far or

near the prediction probabilities are based on the true labels. Figure 4.8 shows the pre-

diction probabilities and true labels when plotted in a single distribution. The green bars

represent the true label 1s (bad outcomes), and the blue bars represent the true label 0s

(good outcomes), while the x-axis represents the prediction probabilities and the y-axis

represents the number of patients in the dataset.

We can observe from this distribution that the model, again, distinguishes the two

classes very well, with most of the green bars beyond the threshold of 0.62 while most of

the blue bars are before the threshold. The green bars are seen to be mostly clustered very

near 1.0, indicating the model’s confidence in predicting the positive classes correctly.
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However, the blue bars are mostly evenly distributed along the left side of the threshold.

Nevertheless, these findings demonstrate that our model achieves a very promising perfor-

mance on an external dataset when trained using the entire publicly available PhysioNet

dataset. This suggests potential future applications in datasets from different hospitals

across the globe, as the model shows robust generalization capabilities across datasets

from different backgrounds. Future studies could further explore deploying this model

on entirely new datasets and conduct additional evaluations to determine whether its per-

formance merely reflects some similarities between the NTUH dataset and the PhysioNet

dataset or if it can genuinely generalize well when trained with the entire PhysioNet train-

ing set.

4.5.2 Baseline Comparisons

Finally, in this subsection, we compare the results of our model with other baselines,

particularly from the challenge, to show how our model compares. We aim to show here

whether attentionmechanisms truly performwell with continuous EEG sequences through

their segmented time steps by comparing them with the baselines.

Among the studies in the challenge that used an attention-based model [27–29], only

our previous study [29] was able to have the proposed model evaluated through the chal-

lenge’s official phase. Thus, the others [27, 28] were not used in this comparative anal-

ysis since their final results from the official phase are not available. Despite not using

an attention-based model, the challenge winner [30] was used as a baseline as it is vi-

tal to show where our model stands with the challenge winner. A previously published

study [13], despite not being part of the challenge, was also used as a baseline since they

used the same dataset as was used in the challenge. It is important to note here that we
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cannot directly compare our results with their results as they used a different data split with

their study, training their model not only with the publicly available training set but also

with the hidden validation and test sets. However, we included their results here to show

how our model compares despite the difference in the data split. It must also be noted that

only Zheng et al. [13] used EEG as the sole input, while Zabihi et al. [30] used ECG with

EEG, and our previous study [29] used clinical data with EEG to train the models.

The AUROC results of our proposed model, when evaluated with cross-validation

through the training set, are plotted in Figure 4.9, together with the results from the bench-

marks. Our model generally outperforms the other benchmarks when evaluated at earlier

hours of 12 hours, 24 hours, and 48 hours. When evaluated at 72 hours, our proposed

model outperforms Zheng et al.’s and our previous study’s models while performing on

par with the challenge winner’s. Another interesting finding when evaluated at 12 hours

is that the other benchmarks all performed at their worst when evaluated at this very early

hour threshold. However, our model was already able to perform very well when eval-

uated at this hour. Although there was a slight decrease in performance in our proposed

model when evaluated at 24 hours, the difference is not very significant, and the results at

this hour still outperform even the challenge winners.

We note here that these benchmark comparisons are only meant to show how our pro-

posed model’s results stand with the previous studies, and readers must take precautions

in making direct comparisons since each benchmark’s setups differ. However, all studies

cited in this benchmark comparison have the same focus on predicting neurological out-

comes from coma patients and make use of the same publicly available dataset from the

2023 PhysioNet Challenge.
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Figure 4.9: AUROC benchmark comparison across the entire PhysioNet public training
set via cross-validation.

4.6 Visualizing the Model

In clinical scenarios, understanding why a model makes certain predictions is cru-

cial for ensuring reliability and trust. Deep learning models, particularly those based on

complex architectures, often act as ”black boxes,” making interpretability challenging.

However, attention-based models, such as the Transformer, offer some level of insight

into their decision-making processes.

By visualizing attention weights from the MHA layers, we can gain a clearer under-

standing of which features from the initial embedding are most influential in the computa-

tion of the learned output embeddings. This is done by analyzing both self-attention (how

a token attends to itself) and cross-attention (how a token attends to other tokens).

In practice, features that exhibit high attention scores in these visualizations are con-

sidered more important, as they contribute significantly to the output embeddings. To
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make these visualizationsmore interpretable, we normalize the attentionweights to a range

between 0 and 1. This ensures that all weights are on a common scale, facilitating clearer

comparisons.

We obtained the attention weights from the trained model’s MHA layers and created

correlation heatmaps to visualize both self-attention and cross-attention for each feature.

These heatmaps help in understanding how each feature interacts with other features, pro-

viding valuable insights into the model’s behavior.

In the first layer, as illustrated in Figure 4.10, the model primarily relies on earlier

features to compute the output embedding. This is evident from the concentration of high

and low attention scores among interactions between early features and both early and

later features. This suggests that the initial layer focuses on leveraging the initial set of

features more heavily.

In contrast, Figures 4.11 and 4.12 show that in the second and third layers, the model

distributes attention more evenly across all features within each token. This indicates that

the model increasingly utilizes a broader range of features when computing the output

embedding, maximizing the use of all available data. The more distributed attention in

these layers reflects the model’s enhanced capability to integrate information from various

features.

The fact that the third layer’s attention patterns are similar to those of the second

layer suggests that additional layers beyond the third may not have significantly improved

performance. This could explain why adding more layers after the third did not result in

notable gains in model performance. Essentially, the model may have already captured the

necessary patterns and relationships in the data by the third layer, making further layers
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Figure 4.10: Attention map of first MHA layer.

redundant in terms of improving model performance.

The attention heatmaps reveal how different features interact with one another in the

learned embedding space. By examining these interactions, we gain insight into which

parts of the learned embedding are most influential in the model’s decision-making pro-

cess. This analysis allows us to trace back how the model weights various aspects of the

input embedding.

Specifically, the attention heatmaps provide a visual representation of how each to-

ken’s self-attention and cross-attention contribute to the final output. By identifying pat-

terns in these attention weights, we can infer which embedding features are most critical
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Figure 4.11: Attention map of second MHA layer.

for the predictions of the model. For instance, features with consistently high attention

scores are likely to have a greater impact on the model’s performance, whereas those with

lower scores might be less influential.

To further evaluate the overall importance of each feature in the embedding space, we

calculated the sum of attention weights for each feature after the final MHA layer. Figure

4.13 presents these summed attention weights, revealing a standardized distribution of

feature importance. This distribution aligns with the previous attention map at the last

layer, where all features contribute nearly equally to the model’s predictive performance.

Among the features, Feature 38 showed the lowest contribution to the model, while
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Figure 4.12: Attention map of third MHA layer.

Feature 22 had the highest contribution. This analysis highlights the relative significance

of individual features within the learned embeddings, providing insight into which features

from the initial embedding are most influential in the model’s decision-making process.

Although Features 22 and 38 represent the extremes in terms of contribution, their

importance is still relatively close to that of other features, suggesting that the differences

are not stark. This indicates that these features are not literal outliers but part of a more

evenly distributed significance spectrum. The summed attention weights across features

reflect this balanced distribution, implying that the model does not heavily favor any par-

ticular feature. As a result, the model may exhibit less bias, considering a wide range of
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Figure 4.13: Feature importance distribution at the final MHA layer.

features in its decision-making process. This balance enhances the model’s robustness

and fairness, potentially improving its generalization and reliability in various scenarios.

It is important to note that these features in the learned embedding are combinations

of all the original features resulting from the transformation through a linear, fully con-

nected layer. Because each learned feature is a mixture of contributions from all original

features, it is challenging to directly associate these learned features with specific real-

world phenomena. Instead, the analysis focuses on understanding the model’s internal

dynamics rather than mapping learned features to specific real-world variables.

4.7 Analyzing Patient-wise EEG

Despite the insights gained from the learned embeddings, understanding the real-

world significance of the original EEG features remains crucial. EEGs are often charac-

terized by the patient from which they were recorded. To understand the similarities and

differences in the characteristics of each patient’s EEG recordings, we first aggregated the
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extracted EEG features into a single mean feature vector per patient. In Figure 4.14, we

present the mean, median, standard deviation, and interquartile range (IQR) for all fea-

tures across patients. By visually analyzing the distribution of these statistical measures,

we can identify distinct outliers among the patients.

Upon analyzing the results, we found notable variations among the patients. Patient

24 had the highest mean score at 0.035, while patient 526 had the lowest at 1.7175e-

05. For the median, patient 597 had the highest score at 0.028, and patient 100 had the

lowest at 1.4898e-06. When looking at the standard deviation, patient 506 had the greatest

variability with a score of 0.0364, whereas patient 526 had the least variability at 3.5280e-

05. The IQR analysis revealed that patient 506 had the widest range at 0.0434, while

patient 100 had the narrowest range at 2.8537e-06.

These patients are among the notable outliers, representing the maximum and min-

imum values among those identified. This pattern demonstrates that EEG characteristics

are highly patient-dependent, reflecting unique physiological or neurological conditions.

The significant differences observed among these patients underscore the importance of

further studies to carefully integrate EEG data from different patients. Properly account-

ing for this variability is crucial to achieving accurate and reliable results, particularly in

personalized treatment or in developing generalized models for broader applications.

4.8 Limitations

Our study poses some limitations that future studies may intend to tackle for further

improvements. The first limitation of our study is its focus on training solely with EEG

data, unlike previous studies in the challenge [27–30] that used a multimodal approach.
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Figure 4.14: Statistics of each feature across all patients
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Our experiments demonstrated excellent results, with the model trained on EEG data alone

outperforming benchmarks that utilized multimodal data. However, future research could

extend our method to include multimodal data to potentially enhance the model’s perfor-

mance and generalizability.

Another limitation is the absence of more intensive channel selection among the EEG

channels used. Some channels are known to be susceptible to external or biological ar-

tifacts. Traditional EEG processing often employs techniques such as principal compo-

nent analysis (PCA) [59], independent component analysis (ICA) [60], and wavelet trans-

form [61] to remove unwanted components from EEG as what previous studies [62–64]

have proposed. Future studies may utilize such techniques to employ channel selections

to potentially improve the results of the current method.

Furthermore, this study employed minimal signal processing steps, focusing on opti-

mizing the Transformer model and evaluating whether attention mechanisms alone could

identify patternswithin the EEGdata. Future researchmight exploremore extensive signal

processing pipelines to further eliminate biological artifacts, resulting in cleaner samples.

However, excessive signal processing may distort EEG signals from their real-life clini-

cal form, potentially leading to poorer prognoses. Future studies should be cautious not to

overly remove data, as some might actually contribute valuable information to the model.

Another limitation of this study is the potential for model bias due to the varying num-

ber of EEG recordings per patient. While using recording-wise samples from all patients

addressed the issue of class imbalance, it also increased the likelihood that the model

learned more patterns from patients with a greater number of recordings. As shown in

Figure 4.15, the distribution of EEG recordings per patient varies significantly. This im-
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balance may have caused the model to develop a bias toward patients with more data,

potentially impacting the generalizability of the results.

Moreover, as highlighted by the statistical analysis from Section 4.7, the EEG char-

acteristics are highly patient-dependent, with significant variability in measures such as

mean, median, standard deviation, and IQR. The presence of outliers, particularly those

patients exhibiting extremely high and low values, suggests that certain patients’ unique

patterns might disproportionately influence the model. This patient dependency further

complicates the model’s ability to generalize across a diverse population.

Our choice of selecting only the first 72 hours of recordings for each patient helped

reduce the potential for overrepresentation of patients with more extensive EEG data.

However, this approach may not entirely eliminate patient bias. Future research could

further refine the methodology to ensure a more balanced representation of recordings

per patient, thereby minimizing any residual bias and enhancing the generalizability of

the model. Additionally, incorporating strategies to account for patient-specific variabil-

ity, such as stratified sampling or advanced normalization techniques, could improve the

robustness of the model and its applicability across diverse patient groups.

Finally, our study used PSD as an EEG feature. Future research could investigate

other types of QEEG features to further enhance model performance. Another research

direction may involve using raw EEG data to learn features through deep learning ap-

proaches. Some previous studies [65–68] have utilized CNN-based models to extract

features from EEG, typically using short recordings from small datasets that require less

computational power. However, this end-to-end setup may prove difficult with the dataset

used in this study due to its extremely large size and the high dimensionality of each EEG
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Figure 4.15: Distribution of EEG recordings per patient

sequence. With access to higher computational power, future research could explore learn-

ing direct feature embeddings from raw EEG and compare the results with models trained

on extracted QEEG features.
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Chapter 5

Conclusion

Our findings in this thesis support our hypotheses and demonstrate that an attention-

based model, specifically the Transformer, performs exceptionally well with EEG data

when processed appropriately. The paragraphs below show our final evaluations of each

of the objectives of the thesis.

1. Recording-wise Training Method: In comparing RW with PW model training,

we validated our first hypothesis. The Transformer significantly improved when

trained with RWEEG data because the attention mechanism benefits from the larger

sample size. This allowed the model to learn better RW patterns and generalize well

to any EEG recording in the test set, regardless of the hour it was recorded after

ROSC.

2. Capturing Long-Distance Temporal Patterns from Continuous EEG: By com-

paringmodels trained on full hour-long EEG recordings to those trained on 5-minute

subsampled epochs, we confirmed our second hypothesis. The Transformer can

capture long-distance temporal patterns across hour-long EEG sequences more ef-
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fectively than the subsampled 5-minute epochs.

3. Leveraging Only EEG Data to Train the Model is Enough: Finally, our third

hypothesis was confirmed by comparing our model to baseline methods. We found

that EEGdata alone is very capable of predicting neurological outcomes in comatose

patients effectively since it was even able to outperform other models trained with

multimodal data. The baseline comparison results also showed that our method

of processing EEG data enables the Transformer to learn efficient long-distance

temporal relationships among time-series tokens within each EEG sequence.

These findings show promising insights into understanding whether attention mech-

anisms work well with EEG sequences to accurately predict neurological outcomes in

comatose cardiac arrest patients. Through this, we hope to aid physicians in making im-

portant clinical decisions since our model can achieve highly competitive results using an

attention-based model over continuous time-series EEG.
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