Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93276
Title: 多物種的羅特卡-弗爾特拉擴散競爭方程組之非單調行波解
Non-monotone traveling wave solutions for the n-species Lotka-Volterra competitive system with diffusion
Authors: 吳政軒
Zheng-Xuan Wu
Advisor: 陳俊全
Chiun-Chuan Chen
Keyword: 羅特卡-弗爾特拉競爭,上下解,
Lotka–Volterra competitive system,upper-lower-solution,
Publication Year : 2024
Degree: 碩士
Abstract: 這篇論文主要研究多物種的羅特卡-弗爾特拉擴散競爭系統(Lotka-Volterra competitive system with diffusion)。我們透過研究行波解以了解該系統,並成功證明連接 O := (0,0,··· ,0) 和 e1 := (1,0,··· ,0) 兩個平衡態的非單調解的存在性。關於這方面的研究在過去的文獻中相當稀少。然而,這類非單調解在生態學中具有重要意義,它可以啟發我們發現一些特殊現象。我們主要的研究方法為利用 Schauder 不動點定理,以及合適的上下解來證明解的存在性,並通過縮小區間的方法來描述z→∞時的漸近行為。另外,透過證明不存在速度小於某個特定值 s∗ 的解,我們找出該系統行波解的最小速度。
This focuses on the n-species Lotka-Volterra competitive system with diffusion. Understanding traveling wave solutions is essential for gaining insights into this dynamical system. We successfully show the existence of non-monotonic pulse-front traveling wave solutions that connect two equilibriums O := (0,··· ,0) and e1 := (1,0,··· ,0). These solutions are significant in ecology and can inspire the exploration of other intriguing phenomena within the Lotka-Volterra system. To prove the existence of traveling wave solutions, we rely on the application of the Schauder fixed-point theorem and appropriate upper-lower solutions. A key breakthrough in our work is the construction of these suitable upper-lower solutions for the competition system. Additionally, the concept of shrinking rectangles is employed to deduce the asymptotic behavior when z → ∞. Furthermore, by proving the non-existence of traveling wave solutions at speeds below a critical threshold s∗, we identify the minimum speed of traveling wave solutions for this model.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93276
DOI: 10.6342/NTU202401349
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf1.17 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved