Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93276Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳俊全 | zh_TW |
| dc.contributor.advisor | Chiun-Chuan Chen | en |
| dc.contributor.author | 吳政軒 | zh_TW |
| dc.contributor.author | Zheng-Xuan Wu | en |
| dc.date.accessioned | 2024-07-23T16:38:18Z | - |
| dc.date.available | 2024-07-24 | - |
| dc.date.copyright | 2024-07-23 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-18 | - |
| dc.identifier.citation | [1] C.-C. Chen and L.-C. Hung. A maximum principle for diffusive lotka–volterra systems of two competing species. Journal of Differential Equations, 261(8):4573 4592, 2016.
[2] C.-C. Chen, L.-C. Hung, M. Mimura, and D. Ueyama. Exact travelling wave solutions of three-species competition–diffusion systems. Discrete and Continuous Dynamical Systems- B, 17(8):2653–2669, Jun 2012. [3] Y.-S. ChenandJ.-S.Guo. Travelingwavesolutionsforathree-species predator–prey model with two aborigine preys. Japan Journal of Industrial and Applied Mathematics, 38(2):455–471, Jun 2021. [4] Y.-Y. Chen, J.-S. Guo, and C.-H. Yao. Traveling wave solutions for a continuous and discrete diffusive predator–prey model. Journal of Mathematical Analysis and Applications, 445(1):212–239, 2017. [5] S.-C. Fu, M. Mimura, and J.-C. Tsai. Traveling waves for a three-component reaction–diffusion model of farmers and hunter-gatherers in the neolithic transition. Journal of Mathematical Biology, 82(4):26, Mar 2021. [6] J.-S. Guo. Traveling wave solutions for some three-species predator-prey systems. Tamkang Journal of Mathematics, 52(1):25–36, Jan. 2021. [7] J.-S. Guo, K.-I. Nakamura, T. Ogiwara, and C.-C. Wu. Traveling wave solutions for a predator–prey system with two predators and one prey. Nonlinear Analysis: Real World Applications, 54:103111, 2020. [8] P. Hartman. Ordinary differential equations. SIAM, 2002. [9] S. Ma. Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem. Journal of Differential Equations, 171(2):294–314, 2001. [10] M. Rodrigo and M. Mimura. Exact solutions of reaction-diffusion systems and nonlinear wave equations. Japan Journal of Industrial and Applied Mathematics, 18(3):657–696, Oct 2001. [11] C.-H. Wu, D. Xiao, and M. Zhou. Sharp estimates for the spreading speeds of the lotka-volterra competition-diffusion system: the strong-weak type, 2022. [12] J. Wu and X. Zou. Traveling wave fronts of reaction-diffusion systems with delay. Journal of Dynamics and Differential Equations, 13(3):651–687, Jul 2001. [13] Z.-X. Yu and R.Yuan. Traveling waves for a lotka–volterra competition system with diffusion. Mathematical and Computer Modelling, 53(5):1035–1043, 2011. [14] T. Zhang and Y. Jin. Traveling waves for a reaction–diffusion–advection predator prey model. Nonlinear Analysis: Real World Applications, 36:203–232, 2017. [15] 楊哲瑋. 兩物種的羅特卡-弗爾特拉擴散競爭方程組之非單調行波解. Master’s thesis, 國立臺灣大學,Jan 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93276 | - |
| dc.description.abstract | 這篇論文主要研究多物種的羅特卡-弗爾特拉擴散競爭系統(Lotka-Volterra competitive system with diffusion)。我們透過研究行波解以了解該系統,並成功證明連接 O := (0,0,··· ,0) 和 e1 := (1,0,··· ,0) 兩個平衡態的非單調解的存在性。關於這方面的研究在過去的文獻中相當稀少。然而,這類非單調解在生態學中具有重要意義,它可以啟發我們發現一些特殊現象。我們主要的研究方法為利用 Schauder 不動點定理,以及合適的上下解來證明解的存在性,並通過縮小區間的方法來描述z→∞時的漸近行為。另外,透過證明不存在速度小於某個特定值 s∗ 的解,我們找出該系統行波解的最小速度。 | zh_TW |
| dc.description.abstract | This focuses on the n-species Lotka-Volterra competitive system with diffusion. Understanding traveling wave solutions is essential for gaining insights into this dynamical system. We successfully show the existence of non-monotonic pulse-front traveling wave solutions that connect two equilibriums O := (0,··· ,0) and e1 := (1,0,··· ,0). These solutions are significant in ecology and can inspire the exploration of other intriguing phenomena within the Lotka-Volterra system. To prove the existence of traveling wave solutions, we rely on the application of the Schauder fixed-point theorem and appropriate upper-lower solutions. A key breakthrough in our work is the construction of these suitable upper-lower solutions for the competition system. Additionally, the concept of shrinking rectangles is employed to deduce the asymptotic behavior when z → ∞. Furthermore, by proving the non-existence of traveling wave solutions at speeds below a critical threshold s∗, we identify the minimum speed of traveling wave solutions for this model. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-23T16:38:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-23T16:38:18Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
摘要 ii Abstract iii Contents iv 1. Introduction 1 2. General Theory 3 3. Upper-lower Solution 6 4. Asymptotic Behavior 10 5. Minimal speed 12 References 13 | - |
| dc.language.iso | en | - |
| dc.subject | 上下解 | zh_TW |
| dc.subject | 羅特卡-弗爾特拉競爭 | zh_TW |
| dc.subject | upper-lower-solution | en |
| dc.subject | Lotka–Volterra competitive system | en |
| dc.title | 多物種的羅特卡-弗爾特拉擴散競爭方程組之非單調行波解 | zh_TW |
| dc.title | Non-monotone traveling wave solutions for the n-species Lotka-Volterra competitive system with diffusion | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳逸昆;王振男;陳建隆 | zh_TW |
| dc.contributor.oralexamcommittee | I-Kun Chen;Jenn-Nan Wang;Jann-Long Chern | en |
| dc.subject.keyword | 羅特卡-弗爾特拉競爭,上下解, | zh_TW |
| dc.subject.keyword | Lotka–Volterra competitive system,upper-lower-solution, | en |
| dc.relation.page | 14 | - |
| dc.identifier.doi | 10.6342/NTU202401349 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-18 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 數學系 | - |
| Appears in Collections: | 數學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf | 1.17 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
