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Abstract

This focuses on the n-species Lotka-Volterra competitive system with diffusion. Under-
standing traveling wave solutions is essential for gaining insights into this dynamical sys-
tem. We successfully show the existence of non-monotonic pulse-front traveling wave
solutions that connect two equilibriums O = (0,---,0)and €1 := (1,0,---,0). These
solutions are significant in ecology and can inspire the exploration of other intriguing
phenomena within the Lotka-Volterra system. To prove the existence of traveling wave
solutions, we rely on the application of the Schauder fixed-point theorem and appropriate
upper-lower solutions. A key breakthrough in our work is the construction of these suitable
upper-lower solutions for the competition system. Additionally, the concept of shrinking
rectangles is employed to deduce the asymptotic behavior when z — oco. Furthermore, by
proving the non-existence of traveling wave solutions at speeds below a critical threshold

s*, we identify the minimum speed of the traveling wave solutions for this model.

Keywords: Lotka-Volterra competitive system, upper-lower-solution
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1 Introduction

Competition systems are crucial for describing interspecific and intraspecific competition
through mathematical equations and simulations. They offer a quantitative insight into
species interactions within ecosystems. By comprehending competition systems, biolo-
gists can more accurately predict and explain phenomena such as species richness, species
distribution, and evolutionary dynamics within ecological systems. Many studies on com-
petition systems, such as those referenced in [1], [7], and [11], have been conducted in

recent years.

In this paper, we consider the n-species competition with diffusion below:

(
n

(ul)t = dl(ul)m —+ 7"1’&1(1 — Z cljuj), xr € R,t > 0,
=1

(Ug)t = dg(Ug)xm + TQUQ(l — Z CQj'Ll,j), T € R,t > O,
j=1 (1.1)

(un)t = dp(Up) gz + Tnun(l — D cpjuj), € Ryt >0,
j=1

\

with u = (uy,- -+ ,u,). In this system, the diffusion rates d;, the intrinsic growth rates 7,
and the competition coefficients ¢;; are considered to be positive forall 4,5 = 1,--- ,n.
n
Weassumed ¢;; =1Vi=1,--- ,nand0 < > ¢1; <1<¢;Vi> 1.
=2
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To know more about this system, we study the existence of traveling wave solutions of
(1.1). We denote z := x — st and let u(x,t) = (w;(z, ), = (4:i(2)i, = é(2)

which connects O = (0,---,0)and €1 = (1,0,---,0). Thatis, p(—00) :=- lim ¢(z) =

Z—>=00

O and ¢(c0) := lim ¢(z) = €. Then, we have the ODE system below:

Z—00

;

di¢] + s¢) +r191(1 = ) c1;0;) =0, 2 €R,
=1

dagly + ¢y +1202(1 — > c250;) =0, z € R,
= (1.2)

dngﬁ;’, -+ S(Z%L + Tn¢n<1 — Z anqu) = O, z € ]R,
=1

\

with ¢ € [0, 1]. The conditions about ¢;; above cause equation (1.2) to be unstable at 0]
but stable at ¢7. Note that the wave speed s must be determined when dealing with this

system.

Set s* := r{lin {=2+/d;r;}. Then s* is the minimal wave speed in this research. That is,
=1, n

there exists a solution ¢ to be the solution of the system (1.2) only if s < s*. Moreover, we

use Schauder’ s fixed-point theorem in conjunction with a suitable upper-lower solution

to prove the existence of ¢. This method has been used on many research like [9], [12]

and [14].
In this paper, we write u := (uy, -+ ,u,) > v := (vy, -+ ,v,) > cifu; > v; > cVi, and
<, >, < use the similar definition. We use the notation > tosumalli =1,--- ;nand )

) Ve
tosum j = 1to 7 = n except 7 = 1.
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2 General Theory

In this chapter, we will define upper-lower solutions (¢, ¢). First, we define two function

spaces X and X, below:

X ={o=1(¢1, - ,0n)|¢ : R - R" is continuous },

Xo={0<¢<1:4eX}

n
Next, we define F' = (Fy,--- , F,) for some constant A > r; > ¢;;Vi=1,--- ,n:
j=1

Jj=1

Therefore, Fj is increasing only with respect to y;, but decreasing with respecttoy; V j # ¢,
forO0 <y <landany¢=1,---,n. We can rewrite (1.2) as

/

d1¢/1/+3¢/1_)‘¢1+F1(¢) :()7 ZGR?

dg(ﬁé’ + 8(?’2 — /\¢2 + F2<¢) = O, z € R,
2.1)

dp @ + 8¢, — Aoy, + F,(¢) =0, z € R.
\
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Consider the operator P = (Py,--- , P,) : X — X, below:

Pi(9)[z] = + ( / Z vy et B0 / N e “”) Fi($)[gdtYi, (2.2)

di(vi - Uz—) —00

where v;t is different real roots of d;z? + sz — A\ = 0. Clearly, (2.2) satisfies the equation
d;P!' 4+ sP] — AP, + F;(¢) = 0V i. Therefore, if ¢ is a fixed point of P, then ¢ is a solution

of (2.1).

Definition 1. (¢, ¢) = (1, ,&n), (91, , ¢n)) is called a pair of upper-lower solu-

tion of (1.2) if ¢, ¢ € X and their first and second derivative are both bounded such that

the following inequalities hold:

UZ(Z) = dia” + S%I + T’Za(l - E - Z Cij@) S 0,

s (2.3)
Li(z) = di¢i" + s¢i +rici(1 — i — Y _ ;) > 0,
J#
foralli =1,--- ,nand z ¢ F, where F is a finite set in R.
Lemma 1. Define the set [g, h] := {f is continuous : ¢ < f < h} for some functions
g,h. Given s < 0 and (¢, ¢) is an upper-lower solution of (1.2) such that:
(1) ¢ > ¢VzeR.
(2.4)
(2)6(27)>¢(z ) and ¢/ (") < H(z")V2 € E.
Then there exists a fixed point ¢ = (¢y,- -+, ¢,) € [0, @] of P; therefore, ¢ is a solution

of (1.2).

Proof. We can check that P maps ® := {¢ € [¢, ¢]} to itself, and it is completely con-

tinuous with respect to some complete weighted normed space on the nonempty bounded

convex closed set ®. By applying the Schauder fixed-point theorem, we can conclude that
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there exists a fixed point ¢ for the operator P. Therefore, ¢ is a solution of (1.2).

More detailed information can be located in the Lemma 2.3 of the reference [4] when

considering k = 1 as « € (0, _min {—ci}).
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3 Upper-lower Solution

In this chapter, we follow the construction in [ 15] and give a pair of upper-lower solution
(6, ¢) of (1.2) for s < s, then the solution ¢ exists by Lemma 1. First, we set some

variables forany ¢ = 1,--- ,n below:

fi(x) = d;z? + sz + 1y,

L —sE/s2—4ddr;

are two real roots of f;.

“T 2d;

We write a; instead of o if o) = a; .

For s < s*, set

e%i 7 — qeti% * ifa) > a;
hi(z) := )
(—ajez — qi(—2)H)e** ifaf =a;
ﬁ if Oé;r > O(i_
yii=g is the unique zero of h;,

(& ifal —a
zyr = argmax(hy) < i,

for some constants g;, p1; > 1 with the inequality a; p; < a; +a; Vi, j. We do not require

a; +a

% — 2 wheni = j.

i # 7, so the inequality says that p; <

.
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Define ¢, ¢ below:

( ¢
1 ifz>—a;!
when of =
o —quez - e* ifz < —aj!
G =< Vi>1,
1 ifz>0
. when o > o (3.1)
e ifz2<0
\ \
(
) ifz> 2z 0 ifz >
1 1= 4 and@:: Vi>1,
hi(z) ifz<z hi(z) ifz <~
\
where 21 € (zar,71) with R (21) < Osuchthat 0 < § = hy(2) <1 =Y 5.
71
Theorem 1. Given s < s* and suitable parameters 1, - - - , i, there exists g1, -+, qn

such that (3.1) is a pair of upper-lower solution of (1.2).

Proof. We need to check (2.4) and (2.3) hold. All of them are easy by direct computation

except L; > 0 when z < ~; for any 7. Note that —a; 'ez > 1V 2z < —q; !, so we estimate

that ¢; < —a ez - e for any j # i. We divide it to four cases and using the fact that

sup(—z)te”* = (%)A for positive A, 7 in case 2 and 4.
2<0

o - -1 o
Case 1: a; > a; and 2 > —a; ~ for some j # i.

Li = dihl! + sh + rihi(1 — hi = > ¢;;0)

J#i
= — e fi(pioy ) — riha(hi + Y ciiby)
J#
> e fiar) —rie® 23 e+ e )
J#i

r;ei *

> 0 N
—etii ® fi( oy

if ¢; >

i 7

(Z cij +e% *)Vz € [min(—

aj_l), 0].
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Case2: o >a; and z < —a; 'Vj # i

Li = =g fiuap) = rihi(hi + Y i)

J#
—qe N filpaag) = et (e = Y ez - €7
J#
= e ? (_Qifi(ﬂiai) — e Z cijoze(—z) - e(ai+ajuiai)z>
i
> el —q; fi(piay ) — i — Tiz — -

C..a.
>0 ifg + Y .
N = —f1,<,u2061 ( Z Q; + oy — oy

- - -1 . .
Case 3: a;” = a; and z > —a; ~ for some j # i.

Li > dig" + s¢i' +rgy — riti(Y_ cij + ¢1)
i
1
> G- Zdz’<_z)_3/2€aiz + ez - 66”2(; cij — ez - %)
JF£

dr;a;
>0 ifg > %( 2)5/%( ch—alez e )V 2z € [m;n( ajl),O].

' J#i
Case4: o = yand 2z < —a; 'V j # .

1 _ . .
L; > q;- Zdi(—z)_?’/ze““ — riez - e (auez - €M7 + Z cijoez - €49%)
J#i

1
= (—2) e (Z%‘di — (=2)*ria;e® Zcijajeajz>

J
—3/2 a;z 1 2 7 7/2
> (—2)"% Zqzdi — e Z(m)
j J

4r; o e 7
>0 ifg > —— 72,
>0 ifg > —7 2(2%6)

By these four cases, we finish the proof that (3.1) is a pair of upper-lower solution of (1.2)

when ¢, - - - , g, are all big enough. Therefore, there exists a solution ¢ of (1.2).
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We give an example of upper-lower solution here. Given n = 3 and coefficients d; =

7:,7”1' = 23_i and Cij = l/] .

p

O + 5Py +401(1 — ¢1 — 302 — 503) = 0,

200 + ¢y + 2¢2(1 — 21 — Py — §¢3) =0,

(364 + 504+ da(1 = 361 — 3 — 0) = 0.

In this system, s* = —4. When s = s* = —4, then a; = 2, s = 1 and oéf =1,1/3. We

can choose p; = 1.1V, ¢; = 30000, g, = 3500, g3 = 400 and § = exp(—10%) by the

above estimate.

We show the upper-lower solutions of ¢, ¢ and ¢3 below by Geogebra:

=

—2exe® ifx < —1/2

1 ,else

,if:l,‘ZZl

x — 30000(—z)"/%)e* | else

¢T3 = min(ew/?’,l)

—exe® ,ifx <-1

b 9= { 1 ,else

7 — 3500(—z)/%)e*,0) ,ifz <0

,ifx >0

[ max (e — 400e'1%/3, 0)

Figure 3.1: The graph of upper-lower solutions of ¢1, ¢ and ¢3
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4 Asymptotic Behavior

In this chapter, we will show the asymptotic behavior of the solution ¢ by shrinking rect-

angles, which way is similar to [3] and [6].

Theorem 2. Given s < s*. The solution ¢ of (1.2) with ¢ < ¢ < ¢ connects O and €1,

where (¢, ¢) is given at (3.1).
Proof.

Define ¢~ = liminf¢(z) and ¢+ = limsup ¢(z) for the solution of (1.2). Let m; = (1 —
200 2—00

0)(§—e?)+0, M, = (1—0)(1+&%)+0and m; = 0, M; = (1—0)(1+€?) Vi > 1 for some

V8 >¢e>0.Thenm ¢ and M\, €} and § — 1~ with m(0) < ¢~ < ¢ < M(0).

Define 0y := sup{0 <0 < 1:m(0) < ¢~ < ¢T < M(0)}. Then either M;(6y) = ¢ for
some i or my(0y) = ¢; musthold. We will show that each of them leads the contradiction.
Since the way to get the contradiction from these cases is similar, we only deal with the

case m1(6y) = ¢7 .
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First, we set functions p; and o; of § for6 < 1and¢ = 1,--- ,n below:

pr:i=1—my — Z%MJ =—0(1—6)+ Z(l — )M >0

§>1 j>1

o;:=1— M; —ZCijm]‘ =1—cimy +m; — M;
JF#i

—(1—0)e? ifi=1
l—ca((1=6)(6—e*)+0) —(1—0)(1+e?) ifi>1

<0 sincecy >1

If ¢; is monotone for large z, then ¢, (00) = m4(6y) and

/On rigi(1l — Z c1;0j)dz = /On —dy¢] — s¢'dz
= —d; (¢} (n) — #1(0)) — s(¢1(n) — ¢1(0))

Since liminf ¢, (1= ¢15¢;) > m1(6y)p1 > 0, the left hand side goes to co whenn — oo
Z—00 j

but the right hand side is uniform bounded, which is a contradiction.

For the other case that ¢ is oscillatory for large z, we choose an increasing sequence of
local minimum points {z,}. Then ¢{(z,) > 0,¢(z,) = 0V n, and ¢1(z,) — m1(6p).

Then 0 = hnrgg}f (dl(blll —+ S¢I1 + 7’1(}51(1 — Z Clj(bj))(zn) Z rlml(ﬁo)pl > 07 (+)
J

Therefore §y = 1 and 65 = m(1) < ¢~ < ¢7 < M(1) = ¢€1, which implies that

¢~ = ¢t = €1. That is, ¢(00) exists and equal to €7.

11 doi:10.6342/NTU202401349
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5 Minimal Speed

In this chapter, we will show that there is no solution of (1.2) when s > s* by contradiction,

which implies that s* is the minimal speed in this system.
Theorem 3. There is no solution of (1.2) for all s > s*.
Proof.

We divide it into two cases: either s € (s*,0) or s > 0. When the first case occurs, one
of the linear terms in (1.2) oscillates on the left side. Then by Hartman-Grobman theorem

[&], this solution is also oscillatory on the left side and does not converge to 0.

When the another case happens, since ¢(—oc) = O, then 1 — 3 c1j¢; > 0Vz < —N.
J

Integrate one part of the first equation in (1.2) and get

0< Tl/ (bl(l — chj(bj)dz Ver<—N
00 ;
— [~y - soidz < —didh (2

Therefore 0 < [ —di¢)(2)dz = —dyr (~N) <0, (—=<).
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