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摘要

這篇論文主要研究多物種的羅特卡-弗爾特拉擴散競爭系統 (Lotka-Volterra

competitive system with diffusion)。我們透過研究行波解以了解該系統，並成功證

明連接 O⃗ := (0, 0, · · · , 0)和 e⃗1 := (1, 0, · · · , 0)兩個平衡態的非單調解的存在性。

關於這方面的研究在過去的文獻中相當稀少。然而，這類非單調解在生態學中具

有重要意義，它可以啟發我們發現一些特殊現象。我們主要的研究方法為利用

Schauder不動點定理，以及合適的上下解來證明解的存在性，並通過縮小區間的

方法來描述 z → ∞時的漸近行為。另外，透過證明不存在速度小於某個特定值

s∗的解，我們找出該系統行波解的最小速度。

關鍵字：羅特卡-弗爾特拉競爭、上下解
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Abstract

This focuses on the n-species Lotka-Volterra competitive system with diffusion. Under-

standing traveling wave solutions is essential for gaining insights into this dynamical sys-

tem. We successfully show the existence of non-monotonic pulse-front traveling wave

solutions that connect two equilibriums O⃗ := (0, · · · , 0) and e⃗1 := (1, 0, · · · , 0). These

solutions are significant in ecology and can inspire the exploration of other intriguing

phenomena within the Lotka-Volterra system. To prove the existence of traveling wave

solutions, we rely on the application of the Schauder fixed-point theorem and appropriate

upper-lower solutions. A key breakthrough in our work is the construction of these suitable

upper-lower solutions for the competition system. Additionally, the concept of shrinking

rectangles is employed to deduce the asymptotic behavior when z →∞. Furthermore, by

proving the non-existence of traveling wave solutions at speeds below a critical threshold

s∗, we identify the minimum speed of the traveling wave solutions for this model.

Keywords: Lotka–Volterra competitive system, upper-lower-solution
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1 Introduction

Competition systems are crucial for describing interspecific and intraspecific competition

through mathematical equations and simulations. They offer a quantitative insight into

species interactions within ecosystems. By comprehending competition systems, biolo-

gists can more accurately predict and explain phenomena such as species richness, species

distribution, and evolutionary dynamics within ecological systems. Many studies on com-

petition systems, such as those referenced in [1], [7], and [11], have been conducted in

recent years.

In this paper, we consider the n-species competition with diffusion below:



(u1)t = d1(u1)xx + r1u1(1−
n∑

j=1

c1juj), x ∈ R, t > 0,

(u2)t = d2(u2)xx + r2u2(1−
n∑

j=1

c2juj), x ∈ R, t > 0,

...

(un)t = dn(un)xx + rnun(1−
n∑

j=1

cnjuj), x ∈ R, t > 0,

(1.1)

with u = (u1, · · · , un). In this system, the diffusion rates di, the intrinsic growth rates ri,

and the competition coefficients cij are considered to be positive for all i, j = 1, · · · , n.

We assumed cii = 1 ∀ i = 1, · · · , n and 0 <
n∑

j=2

c1j < 1 < ci1 ∀ i > 1.
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To know more about this system, we study the existence of traveling wave solutions of

(1.1). We denote z := x − st and let u(x, t) := (ui(x, t))
n
i=1 = (ϕi(z))

n
i=1 =: ϕ(z)

which connects O⃗ = (0, · · · , 0) and e⃗1 = (1, 0, · · · , 0). That is, ϕ(−∞) := lim
z→−∞

ϕ(z) =

O⃗ and ϕ(∞) := lim
z→∞

ϕ(z) = e⃗1. Then, we have the ODE system below:



d1ϕ
′′
1 + sϕ′

1 + r1ϕ1(1−
n∑

j=1

c1jϕj) = 0, z ∈ R,

d2ϕ
′′
2 + sϕ′

2 + r2ϕ2(1−
n∑

j=1

c2jϕj) = 0, z ∈ R,

...

dnϕ
′′
n + sϕ′

n + rnϕn(1−
n∑

j=1

cnjϕj) = 0, z ∈ R,

(1.2)

with ϕ ∈ [0, 1]. The conditions about cij above cause equation (1.2) to be unstable at O⃗

but stable at e⃗1. Note that the wave speed s must be determined when dealing with this

system.

Set s∗ := min
i=1,··· ,n

{−2
√
diri}. Then s∗ is the minimal wave speed in this research. That is,

there exists a solution ϕ to be the solution of the system (1.2) only if s ≤ s∗.Moreover, we

use Schauder＇s fixed-point theorem in conjunction with a suitable upper-lower solution

to prove the existence of ϕ. This method has been used on many research like [9], [12]

and [14].

In this paper, we write u := (u1, · · · , un) > v := (v1, · · · , vn) > c if ui > vi > c ∀ i, and

<,≥,≤ use the similar definition. We use the notation
∑
i

to sum all i = 1, · · · , n and
∑
j ̸=i

to sum j = 1 to j = n except j = i.

2
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2 General Theory

In this chapter, we will define upper-lower solutions (ϕ, ϕ). First, we define two function

spaces X and X0 below:

X := {ϕ = (ϕ1, · · · , ϕn)|ϕ : R→ Rn is continuous},

X0 := {0 ≤ ϕ ≤ 1 : ϕ ∈ X}.

Next, we define F = (F1, · · · , Fn) for some constant λ > ri
n∑

j=1

cij ∀ i = 1, · · · , n :

Fi(y) := λyi + riyi(1−
n∑

j=1

cijyj) ∀ i = 1, · · · , n.

Therefore,Fi is increasing onlywith respect to yi, but decreasingwith respect to yj ∀ j ̸= i,

for 0 ≤ y ≤ 1 and any i = 1, · · · , n.We can rewrite (1.2) as



d1ϕ
′′
1 + sϕ′

1 − λϕ1 + F1(ϕ) = 0, z ∈ R,

d2ϕ
′′
2 + sϕ′

2 − λϕ2 + F2(ϕ) = 0, z ∈ R,

...

dnϕ
′′
n + sϕ′

n − λϕn + Fn(ϕ) = 0, z ∈ R.

(2.1)

3
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Consider the operator P = (P1, · · · , Pn) : X → X0 below:

Pi(ϕ)[z] :=
1

di(v
+
i − v−i )

(∫ z

−∞
v−i e

v−i (z−t) +

∫ ∞

z

v+i e
v+i (z−t)

)
Fi(ϕ)[t]dt ∀ i, (2.2)

where v±i is different real roots of dix2 + sx− λ = 0. Clearly, (2.2) satisfies the equation

diP
′′
i +sP ′

i −λPi+Fi(ϕ) = 0 ∀ i. Therefore, if ϕ is a fixed point of P, then ϕ is a solution

of (2.1).

Definition 1. (ϕ, ϕ) = ((ϕ1, · · · , ϕn), (ϕ1, · · · , ϕn)) is called a pair of upper-lower solu-

tion of (1.2) if ϕ, ϕ ∈ X0 and their first and second derivative are both bounded such that

the following inequalities hold:

Ui(z) := diϕi
′′
+ sϕi

′
+ riϕi(1− ϕi −

∑
j ̸=i

cijϕj) ≤ 0,

Li(z) := diϕi
′′ + sϕi

′ + riϕi(1− ϕi −
∑
j ̸=i

cijϕj) ≥ 0,

(2.3)

for all i = 1, · · · , n and z /∈ E, where E is a finite set in R.

Lemma 1. Define the set [g, h] := {f is continuous : g ≤ f ≤ h} for some functions

g, h. Given s < 0 and (ϕ, ϕ) is an upper-lower solution of (1.2) such that:

(1) ϕ ≥ ϕ ∀ z ∈ R.

(2) ϕ
′
(z−) ≥ ϕ

′
(z+) and ϕ′(z−) ≤ ϕ′(z+) ∀ z ∈ E.

(2.4)

Then there exists a fixed point ϕ = (ϕ1, · · · , ϕn) ∈ [ϕ, ϕ] of P ; therefore, ϕ is a solution

of (1.2).

Proof. We can check that P maps Φ := {ϕ ∈ [ϕ, ϕ]} to itself, and it is completely con-

tinuous with respect to some complete weighted normed space on the nonempty bounded

convex closed set Φ. By applying the Schauder fixed-point theorem, we can conclude that

4
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there exists a fixed point ϕ for the operator P. Therefore, ϕ is a solution of (1.2).

More detailed information can be located in the Lemma 2.3 of the reference [4] when

considering k = 1 as α ∈ (0, min
i=1,··· ,n

{−ci1}).

5
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3 Upper-lower Solution

In this chapter, we follow the construction in [15] and give a pair of upper-lower solution

(ϕ, ϕ) of (1.2) for s ≤ s∗, then the solution ϕ exists by Lemma 1. First, we set some

variables for any i = 1, · · · , n below:

fi(x) := dix
2 + sx+ ri,

α±
i :=

−s±
√
s2 − 4diri
2di

are two real roots of fi.

We write αi instead of α±
i if α+

i = α−
i .

For s ≤ s∗, set

hi(z) :=


eα

−
i z − qie

µiα
−
i z if α+

i > α−
i

(−αiez − qi(−z)1/2)eαiz if α+
i = α−

i

,

γi :=


− ln qi

(µi−1)α−
i

if α+
i > α−

i

−( qi
αie

)2 if α+
i = α−

i

is the unique zero of hi,

zM := argmax(h1) < γ1,

for some constants qi, µi > 1with the inequality α−
i µi < α−

i +α−
j ∀ i, j.We do not require

i ̸= j, so the inequality says that µi <
α−
i +α−

j

α−
i

= 2 when i = j.

6
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Define ϕ, ϕ below:

ϕi :=




1 if z ≥ −α−1

i

−αiez · eαiz if z < −α−1
i

when α±
i = αi


1 if z ≥ 0

eα
−
i z if z < 0

when α+
i > α−

i

∀ i ≥ 1,

ϕ1 :=


δ if z ≥ z1

hi(z) if z < z1

and ϕi :=


0 if z ≥ γi

hi(z) if z < γi

∀ i > 1,

(3.1)

where z1 ∈ (zM , γ1) with h′
1(z1) < 0 such that 0 < δ = h1(z1) < 1−

∑
j ̸=1

c1j.

Theorem 1. Given s ≤ s∗ and suitable parameters µ1, · · · , µn, there exists q1, · · · , qn

such that (3.1) is a pair of upper-lower solution of (1.2).

Proof.We need to check (2.4) and (2.3) hold. All of them are easy by direct computation

except Li ≥ 0 when z < γi for any i. Note that −α−1
i ez ≥ 1 ∀ z ≤ −α−1

i , so we estimate

that ϕj ≤ −αiez · eαiz for any j ̸= i. We divide it to four cases and using the fact that

sup
z≤0

(−z)λeηz = ( λ
ηe
)λ for positive λ, η in case 2 and 4.

Case 1: α+
i > α−

i and z ≥ −α−1
j for some j ̸= i.

Li = dih
′′
i + sh′

i + rihi(1− hi −
∑
j ̸=i

cijϕj)

= −qieµiα
−
i zfi(µiα

−
i )− rihi(hi +

∑
j ̸=i

cijϕj)

≥ −qieµiα
−
i zfi(µiα

−
i )− rie

α−
i z(
∑
j ̸=i

cij + eα
−
i z)

≥ 0 if qi ≥
rie

α−
i z

−eµiα
−
i zfi(µiα

−
i )

(
∑
j ̸=i

cij + eα
−
i z) ∀ z ∈ [min

j ̸=i
(−α−1

j ), 0].

7
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Case 2: α+
i > α−

i and z < −α−1
j ∀ j ̸= i.

Li = −qieµiα
−
i zfi(µiα

−
i )− rihi(hi +

∑
j ̸=i

cijϕj)

≥ −qieµiα
−
i zfi(µiα

−
i )− rie

α−
i z(eα

−
i z −

∑
j ̸=i

cijαjez · eαjz)

= eµiα
−
i z

(
−qifi(µiα

−
i )− rie

(2−µi)α
−
i z − ri

∑
j ̸=i

cijαje(−z) · e(α
−
i +αj−µiα

−
i )z

)

≥ eµiα
−
i z

(
−qifi(µiα

−
i )− ri − ri

∑
j ̸=i

cijαj

α−
i + αj − µiα

−
i

)

≥ 0 if qi ≥
ri

−fi(µiαi)

(
1 +

∑
j ̸=i

cijαj

α−
i + αj − µiα

−
i

)
.

Case 3: α±
i = αi and z ≥ −α−1

j for some j ̸= i.

Li ≥ diϕi
′′ + sϕi

′ + rϕi − riϕi(
∑
j ̸=i

cij + ϕi)

≥ qi ·
1

4
di(−z)−3/2eαiz + riαiez · eαiz(

∑
j ̸=i

cij − αiez · eαiz)

≥ 0 if qi ≥
4riαie

di
(−z)5/2(

∑
j ̸=i

cij − αiez · eαiz) ∀ z ∈ [min
j ̸=i

(−α−1
j ), 0].

Case 4: α±
i = αi and z < −α−1

j ∀ j ̸= i.

Li ≥ qi ·
1

4
di(−z)−3/2eαiz − riαiez · eαiz(αiez · eα1z +

∑
j ̸=i

cijαjez · eαjz)

= (−z)−3/2eαiz

(
1

4
qidi − (−z)7/2riαie

2
∑
j

cijαje
αjz

)

≥ (−z)−3/2eαiz

(
1

4
qidi − riαie

2
∑
j

(
7

2αje
)7/2

)

≥ 0 if qi ≥
4riαie

2

di

∑
j

(
7

2αje
)7/2.

By these four cases, we finish the proof that (3.1) is a pair of upper-lower solution of (1.2)

when q1, · · · , qn are all big enough. Therefore, there exists a solution ϕ of (1.2).

8
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We give an example of upper-lower solution here. Given n = 3 and coefficients di =

i, ri = 23−i and cij = i/j :



ϕ′′
1 + sϕ′

1 + 4ϕ1(1− ϕ1 − 1
2
ϕ2 − 1

3
ϕ3) = 0,

2ϕ′′
2 + sϕ′

2 + 2ϕ2(1− 2ϕ1 − ϕ2 − 2
3
ϕ3) = 0,

3ϕ′′
3 + sϕ′

3 + ϕ3(1− 3ϕ1 − 3
2
ϕ2 − ϕ3) = 0.

In this system, s∗ = −4. When s = s∗ = −4, then α1 = 2, α2 = 1 and α±
3 = 1, 1/3. We

can choose µi = 1.1 ∀ i, q1 = 30000, q2 = 3500, q3 = 400 and δ = exp(−109) by the

above estimate.

We show the upper-lower solutions of ϕ1, ϕ2 and ϕ3 below by Geogebra:

Figure 3.1: The graph of upper-lower solutions of ϕ1, ϕ2 and ϕ3

9
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4 Asymptotic Behavior

In this chapter, we will show the asymptotic behavior of the solution ϕ by shrinking rect-

angles, which way is similar to [3] and [6].

Theorem 2. Given s ≤ s∗. The solution ϕ of (1.2) with ϕ ≤ ϕ ≤ ϕ connects O⃗ and e⃗1,

where (ϕ, ϕ) is given at (3.1).

Proof.

Define ϕ− = lim inf
z→∞

ϕ(z) and ϕ+ = lim sup
z→∞

ϕ(z) for the solution of (1.2). Letm1 = (1−

θ)(δ−ε2)+θ,M1 = (1−θ)(1+ε2)+θ andmi = 0,Mi = (1−θ)(1+ε2) ∀ i > 1 for some
√
δ > ε > 0. Thenm↗ e⃗1 andM ↘ e⃗1 and θ → 1− withm(0) ≤ ϕ− ≤ ϕ+ < M(0).

Define θ0 := sup{0 ≤ θ < 1 : m(θ) ≤ ϕ− ≤ ϕ+ < M(θ)}. Then eitherMi(θ0) = ϕ+ for

some i orm1(θ0) = ϕ−
1 must hold. We will show that each of them leads the contradiction.

Since the way to get the contradiction from these cases is similar, we only deal with the

casem1(θ0) = ϕ−
1 .

10
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First, we set functions ρ1 and σi of θ for θ < 1 and i = 1, · · · , n below:

ρ1 := 1−m1 −
∑
j>1

c1jMj = −δ(1− θ) +
∑
j>1

(1− c1j)Mj > 0

σi := 1−Mi −
∑
j ̸=i

cijmj = 1− ci1m1 +mi −Mi

=


−(1− θ)ε2 if i = 1

1− ci1
(
(1− θ)(δ − ε2) + θ

)
− (1− θ)(1 + ε2) if i > 1

< 0 since ci1 ≥ 1

If ϕ1 is monotone for large z, then ϕ1(∞) = m1(θ0) and

∫ n

0

r1ϕ1(1−
∑
j

c1jϕj)dz =

∫ n

0

−d1ϕ′′
1 − sϕ′

1dz

= −d1(ϕ′
1(n)− ϕ′

1(0))− s(ϕ1(n)− ϕ1(0))

Since lim inf
z→∞

ϕ1(1−
∑
j

c1jϕj) ≥ m1(θ0)ρ1 > 0, the left hand side goes to∞when n→∞

but the right hand side is uniform bounded, which is a contradiction.

For the other case that ϕ is oscillatory for large z, we choose an increasing sequence of

local minimum points {zn}. Then ϕ′′
1(zn) ≥ 0, ϕ′

1(zn) = 0 ∀n, and ϕ1(zn) → m1(θ0).

Then 0 = lim inf
n→∞

(
d1ϕ

′′
1 + sϕ′

1 + r1ϕ1(1−
∑
j

c1jϕj)
)
(zn) ≥ r1m1(θ0)ρ1 > 0, (→←).

Therefore θ0 = 1 and e⃗1 = m(1) ≤ ϕ− ≤ ϕ+ ≤ M(1) = e⃗1, which implies that

ϕ− = ϕ+ = e⃗1. That is, ϕ(∞) exists and equal to e⃗1.

11
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5 Minimal Speed

In this chapter, wewill show that there is no solution of (1.2) when s > s∗ by contradiction,

which implies that s∗ is the minimal speed in this system.

Theorem 3. There is no solution of (1.2) for all s > s∗.

Proof.

We divide it into two cases: either s ∈ (s∗, 0) or s ≥ 0. When the first case occurs, one

of the linear terms in (1.2) oscillates on the left side. Then by Hartman-Grobman theorem

[8], this solution is also oscillatory on the left side and does not converge to 0.

When the another case happens, since ϕ(−∞) = O⃗, then 1 −
∑
j

c1jϕj > 0 ∀ z < −N.

Integrate one part of the first equation in (1.2) and get

0 < r1

∫ x

−∞
ϕ1(1−

∑
j

c1jϕj)dz ∀ x < −N

=

∫ x

−∞
−d1ϕ′′

1 − sϕ′
1dz ≤ −d1ϕ′

1(z)

Therefore 0 <
∫ −N

−∞ −d1ϕ
′
1(z)dz = −d1ϕ1(−N) ≤ 0, (→←).

12
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