Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7092
Title: 有關歐氏空間中凸體的Brunn-Minkowski不等式
The generalized Brunn-Minkowski inequality
Authors: Kai-Lun Lo
羅楷綸
Advisor: 沈俊嚴
Keyword: 凸體,Minkowski和,混合體積,Brunn-Minkowski不等式,椎體積測度,
convex bodies,Minkowski sum,mixed volume,Brunn-Minkowski inequality,cone-volume measure,
Publication Year : 2020
Degree: 碩士
Abstract: 凸幾何是一個研究凸函數和凸集的領域。'一集合是個凸集'是個很好的特性,足夠強大使我們可以推導出豐富的結果,又不會太難達成,所以其結果也可以適用在廣闊的情形。在凸幾何中,有一個不等式叫Brunn-Minkowski不等式,它給出兩個凸體的體積和它們的Minkowski和的體積的關係。
原始的Brunn-Minkowski不等式對所有的凸體都適用,而Böröczky,Lutwak,Yang和Zhang給出了一個針對原點對稱凸體的更強猜想,並且證明了在二維歐式空間的情況。
在這篇論文中 我們首先介紹凸幾何中一些基本的概念,然後是Böröczky,Lutwak,Yang和Zhang的論文中的工作,其中他們證明了log-Brunn-Minkowski不等式。
Convex geometry is a branch of geometry that studies convex functions and convex sets. Because of the strong property, convexity, this research area has many successful theories and applications. In convex geometry, there is an inequality concerning the relationship between the volumes of two convex bodies, and the volume of their Minkowski sum. This important inequality is called Brunn-Minkowski inequality.
The classical Brunn-Minkowski inequality is valid for every two convex bodies. For origin-symmetric convex bodies, stronger inequalities are studied and conjectured by Böröczky, Lutwak, Yang and Zhang. In their work, these inequalities were proved for origin-symmetric convex bodies in two dimensional Euclidean space.
In this thesis we will introduce some basic notions in convex geometry and then the work of Böröczky, Lutwak, Yang and Zhang, in which they proved the log-Brunn-Minkowski inequality.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7092
DOI: 10.6342/NTU202001018
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-109-1.pdf1.14 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved