Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7092
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈俊嚴
dc.contributor.authorKai-Lun Loen
dc.contributor.author羅楷綸zh_TW
dc.date.accessioned2021-05-17T15:59:32Z-
dc.date.available2020-07-28
dc.date.available2021-05-17T15:59:32Z-
dc.date.copyright2020-07-28
dc.date.issued2020
dc.date.submitted2020-06-16
dc.identifier.citationPeter M. Gruber. Convex and Discrete Geometry, Springer-Verlag, 2007.
R. Schneider. Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993
Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G.: The log-Brunn–Minkowski inequality. Adv. Math. 231, 1974–1997 (2012)
Ralph Howard. The John Ellipsoid Theorem. Lecture at the University of South Carolina, November 1997.
C. Haberl, E. Lutwak, D. Yang, and G. Zhang, The even Orlicz Minkowski problem. Lecture at the University of South Adv. Math. 224 (2010)
E. Lutwak, The Brunn-Minkowski-Firey Theory I: Mixed volumes and the Minkowski Problem. J. Differential Geom. 38 (1993), 131-150.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7092-
dc.description.abstract凸幾何是一個研究凸函數和凸集的領域。'一集合是個凸集'是個很好的特性,足夠強大使我們可以推導出豐富的結果,又不會太難達成,所以其結果也可以適用在廣闊的情形。在凸幾何中,有一個不等式叫Brunn-Minkowski不等式,它給出兩個凸體的體積和它們的Minkowski和的體積的關係。
原始的Brunn-Minkowski不等式對所有的凸體都適用,而Böröczky,Lutwak,Yang和Zhang給出了一個針對原點對稱凸體的更強猜想,並且證明了在二維歐式空間的情況。
在這篇論文中 我們首先介紹凸幾何中一些基本的概念,然後是Böröczky,Lutwak,Yang和Zhang的論文中的工作,其中他們證明了log-Brunn-Minkowski不等式。
zh_TW
dc.description.abstractConvex geometry is a branch of geometry that studies convex functions and convex sets. Because of the strong property, convexity, this research area has many successful theories and applications. In convex geometry, there is an inequality concerning the relationship between the volumes of two convex bodies, and the volume of their Minkowski sum. This important inequality is called Brunn-Minkowski inequality.
The classical Brunn-Minkowski inequality is valid for every two convex bodies. For origin-symmetric convex bodies, stronger inequalities are studied and conjectured by Böröczky, Lutwak, Yang and Zhang. In their work, these inequalities were proved for origin-symmetric convex bodies in two dimensional Euclidean space.
In this thesis we will introduce some basic notions in convex geometry and then the work of Böröczky, Lutwak, Yang and Zhang, in which they proved the log-Brunn-Minkowski inequality.
en
dc.description.provenanceMade available in DSpace on 2021-05-17T15:59:32Z (GMT). No. of bitstreams: 1
ntu-109-R07221012-1.pdf: 1171879 bytes, checksum: 1686568280b50d48228f5e2c067211ef (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents1 Introduction 1
2 Preliminaries 4
2.1 Convex Bodies and Support Functions . . . . . . . . . . . . . . . . . . 4
2.2 Minkowski’s Theorem on Mixed Volumes . . . . . . . . . . . . . . . . . 9
2.3 The Blaschke’s Selection Theorem . . . . . . . . . . . . . . . . . . . . . 10
2.4 The Brunn-Minkowski Inequality . . . . . . . . . . . . . . . . . . . . . 14
2.5 Minkowski’s First and Second Inequalities . . . . . . . . . . . . . . . . 20
2.6 The Isoperimetric and the Isodiametric Inequality . . . . . . . . . . . . 22
3 The work of Böröczky, Lutwak, Yang and Zhang 24
3.1 Some Preparations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 The log-Brunn-Minkowski Inequality . . . . . . . . . . . . . . . . . . . 28
3.3 Equivalence of the Lp-Brunn-Minkowski and the Lp-Minkowski Inequalities 32
3.4 Blaschke’s Extension of the Bonnesen Inequality . . . . . . . . . . . . . 37
3.5 Uniqueness of Planar Cone-Volume Measure . . . . . . . . . . . . . . . 40
3.6 Minimizing the Logarithmic Mixed Volume . . . . . . . . . . . . . . . . 44
3.7 The log-Minkowski Inequality . . . . . . . . . . . . . . . . . . . . . . . 48
dc.language.isoen
dc.title有關歐氏空間中凸體的Brunn-Minkowski不等式zh_TW
dc.titleThe generalized Brunn-Minkowski inequalityen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林欽誠,黃皓瑋
dc.subject.keyword凸體,Minkowski和,混合體積,Brunn-Minkowski不等式,椎體積測度,zh_TW
dc.subject.keywordconvex bodies,Minkowski sum,mixed volume,Brunn-Minkowski inequality,cone-volume measure,en
dc.relation.page56
dc.identifier.doi10.6342/NTU202001018
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-06-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf1.14 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved