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中文摘要

凸幾何是一個研究凸函數和凸集的領域。” 一集合是個凸集” 是個很好的特性，足夠

強大使我們可以推導出豐富的結果，又不會太難達成，所以其結果也可以適用在廣

闊的情形。在凸幾何中，有一個不等式叫 Brunn-Minkowski 不等式，它給出兩個凸

體的體積和它們的 Minkowski 和的體積的關係。

原始的 Brunn-Minkowski 不等式對所有的凸體都適用，而 Böröczky，Lutwak，

Yang 和 Zhang 給出了一個針對原點對稱凸體的更強猜想，並且證明了在二維歐式空

間的情況。

在這篇論文中我們首先介紹凸幾何中一些基本的概念，然後是 Böröczky，Lut-

wak，Yang 和 Zhang 的論文中的工作，其中他們證明了 log-Brunn-Minkowski 不等

式。

關鍵字: 凸體, Minkowski 和, 混合體積, Brunn-Minkowski 不等式, 椎體積測度.
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Abstract

Convex geometry is a branch of geometry that studies convex functions and convex

sets. Because of the strong property, convexity, this research area has many success-

ful theories and applications. In convex geometry, there is an inequality concerning

the relationship between the volumes of two convex bodies, and the volume of their

Minkowski sum. This important inequality is called Brunn-Minkowski inequality.

The classical Brunn-Minkowski inequality is valid for every two convex bodies. For

origin-symmetric convex bodies, stronger inequalities are studied and conjectured by

Böröczky, Lutwak, Yang and Zhang. In their work, these inequalities were proved for

origin-symmetric convex bodies in two dimensional Euclidean space.

In this thesis we will introduce some basic notions in convex geometry and then

the work of Böröczky, Lutwak, Yang and Zhang, in which they proved the log-Brunn-

Minkowski inequality.

key words: convex bodies, Minkowski sum, mixed volume, Brunn-Minkowski in-

equality, cone-volume measure.
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Chapter 1

Introduction

Convex geometry is a branch of geometry that studies convex functions and convex

sets. Because of the strong property, convexity, this research area has many successful

theories and applications.

Among those important properties, in particular the supporting functions of convex

bodies play an important role since one of them uniquely determines the other. In this

dissertation, we will mainly study several important properties about the volumes of

convex bodies.

First, the Minkowski’s theorem on mixed volume says that the volume of a linear

combination of convex bodies is a polynomial in the coefficients of the linear combination

and the coefficients of the polynomial are the mixed volumes.

Moreover Blaschke’s selection theorem also says that any bounded sequence of

nonempty compact convex sets in Rd contains a convergent subsequence with respect

to some particular metric. It can be used to show the existence of the solution of some

problems.

In convex geometry, there is an extremely important inequality concerning the rela-

tionship between the volumes of two convex bodies, and the volume of their Minkowski

sum. This important inequality is called the Brunn-Minkowski inequality.

1
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There are many applications of the Brunn-Minkowski inequality, for example the

isoperimetric inequality and the isodiametric inequality which will be introduced in the

end of chapter 2.

The classical Brunn-Minkowski inequality is valid for every two convex bodies. For

origin-symmetric convex bodies, stronger inequalities are studied and conjectured in

[3]. In their work, these inequalities were proved for origin symmetric convex bodies in

two dimensional Euclidean space.

In chapter 3, we introduce the methods in [3], which proved the log-Minkowski

inequality and hence the log-Brunn-Minkowski inequality. Although we have attempted

to prove some similar results in three dimensional Euclidean spaces but failed, we hope

to continue to pursue them in the near future.

Below is the organization of this dissertation. In the first section, some definitions

and some lemmas are prepared, in particular the definition of the cone-volume measure

is very important.

The main inequalities such as log-Brunn-Minkowski inequality were listed in the

second section. Then two strong-weak relationships of these inequalities are proved.

Next, the log/Lp-Brunn-Minkowski inequalities and the log/Lp-Minkowski inequal-

ities are showed to be equivalent in the sense that one can easily imply the other.

The Blaschke’s extension of the Bonnesen inequality says that V (C)− 2tV (C,D)+

t2V (D) ≤ 0 for r(C,D) ≤ t ≤ R(C,D). For the definitions, see section 3.1.

Uniqueness of planar cone-volume measure, which tells us what could happen if two

convex bodies have the same cone-volume measure, is very important in the proof of

the log-Minkowski inequality.

The finial tool, Lemma 3.6.2, guarantees the existence of the minimum of
∫
S1 loghQdVC

with some constraints. With these tools, the log-Minkowski inequality can finally be

proved.

NOTE: This dissertation is based on Gruber’s book [1] and a paper of Böröczky,
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Lutwak, Yang and Zhang [3]. The basic notions in chapter 2 come from [1] and chapter

3 is mainly from [3].

3
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Chapter 2

Preliminaries

2.1 Convex Bodies and Support Functions

Let Bd = {x ∈ Rd : |x| ≤ 1} be the unit closed ball with center o in Rd. Let intC stands

for the interior of C. For x, y ∈ Rd, let [x, y] = {(1 − λ)x + λy : 0 ≤ λ ≤ 1} be the

line segment with endpoints x, y. A set C in Rd is convex if [x, y] ⊂ C∀x, y ∈ C. Let

f : C → R be a real function on C. The function f is convex if C is convex and

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) for x, y ∈ C, 0 ≤ λ ≤ 1.

f is strictly convex if C is convex and

f((1− λ)x+ λy) < (1− λ)f(x) + λf(y) for x, y ∈ C, x ̸= y, 0 < λ < 1.

f is called concave, respectively, strictly concave if −f is convex, respectively, strictly

convex. V (C) denotes the volume of C. That is, the Lebesgue measure of C in Rd. A

convex body is a compact convex set with nonempty interior. Let C = C(Rd) be the

space of convex bodies in Rd.

4
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Let hC : Rd → R be the support function of C, defined by

hC(u) = max{u · x : x ∈ C} for u ∈ Rd.

For u ∈ Sd−1, let HC(u) = {x : u · x = hC(u)} be the support hyperplane of C with

exterior normal vector u, and H−
C (u) = {x : u · x ≤ hC(u)} be the support halfspace of

C with exterior normal vector u.

For a convex body C, define a mapping pC : Rd → C such that

∥x− pC(x)∥ = min
y∈C

∥x− y∥.

That is, for each x ∈ Rd, the point pC(x) ∈ C is the one closest to x. Since C is closed,

it is clear that pC(x) exists for each x ∈ Rd. To see that pC(x) is unique for each x ∈ Rd,

assume that there are points y, z ∈ C, y ̸= z, both having minimum distance from x.

Then ∥y − x∥ = ∥z − x∥ and therefore by the parallelogram law,

∥(y + z)− 2x∥2 + ∥y − z∥2 = 2∥y − x∥2 + 2∥z − x∥2 = 4∥y − x∥2.

Since y ̸= z,

∥1
2
(y + z)− x∥2 = 1

4
∥(y + z)− 2x∥2 < ∥y − x∥2.

That is,

∥1
2
(y + z)− x∥ < ∥y − x∥ = ∥z − x∥.

Since 1
2
(y + z) ∈ [y, z] ⊂ C, there is a point in C which is closer to x, this contradicts

our choice of y, z. The uniqueness follows, and so pC is well-defined.

Theorem 2.1.1. Let C ∈ C(Rd). Then

C = ∩u∈Sd−1H−
C (u).

5
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Proof. Clearly, C ⊂ H−
C (u) ∀u ∈ Sd−1. So,

C ⊂ ∩u∈Sd−1H−
C (u).

Now let z ∈ Rd \ C, then z ̸= pC(z) since pC(z) ∈ C. Let

u =
z − pC(z)

∥z − pC(z)∥
∈ Sd−1.

Suppose hC(u) ̸= u·pC(z), then by definition of the support functions, hC(u) > u·pC(z).

So there exists y ∈ C such that u·y > u·pC(z). Therefore we can see that u·(y−pC(z)) >

0. Let D = ∥z − pC(z)∥, v = y − pC(z), and x = pC(z) + λv ∈ [pC(z), y] ⊂ C, where

λ ∈ [0, 1]. Then

∥z − x∥2 = ∥Du− λv∥2 = D2∥u∥2 − 2Dλ(u · v) + λ2∥v∥2

= D2 − λ[2D(u · v)− ∥v∥2λ] < D2 = ∥z − pC(z)∥2 as 0 < λ <
2D(u · v)
∥v∥2

.

Let λ = min{1, D(u·v)
∥v∥2 }, we conclude that

∥x− z∥ < ∥pC(z)− z∥

This contradicts the definition of pC(z). So,

hC(u) = u · pC(z).

Observe that

u · z = u · (pC(z) + ∥z − pC(u)∥u) > u · pC(z) = hC(u).

6
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So, z /∈ H−
C (u). Therefore,

z /∈ ∩u∈Sd−1H−
C (u).

Hence,

C ⊃ ∩u∈Sd−1H−
C (u).

The result follows.

Corollary 2.1.2. Let C,D ∈ C, then

C ⊂ D if and only if hC ≤ hD.

Proof. Suppose that C ⊂ D, then ∀u ∈ Rn,

hC(u) = max{u · x : x ∈ C} ≤ max{u · x : x ∈ D} = hD(u).

Suppose that hC ≤ hD, then ∀u ∈ Sd−1,

H−
C (u) = {x : u · x ≤ hC(u)} ⊂ {x : u · x ≤ hD(u)} = h−

D(u).

By Theorem 2.1.1,

C = ∩u∈Sd−1H−
C (u) ⊂ ∩u∈Sd−1H−

D(u) = D.

So, the result follows.

This corollary also tell us that a convex body is uniquely determined by its support

function.

Now, let’s define the Minkowski sum and the scalar multiplication in C :

C +D = {x+ y : x ∈ C, y ∈ D} for C,D ∈ C is the Minkowski sum of C and D.

λC = {λx : x ∈ C} for C ∈ C, λ ∈ R is the multiplication of C with λ.

7
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Proposition 2.1.3. Let C,D ∈ C and λ > 0. Then C +D,λC ∈ C.

Proof. Let u+ x, v + y ∈ C +D where u, v ∈ C, x, y ∈ D, and let 0 ≤ λ ≤ 1. Then

(1− λ)(u+ x) + λ(v + y) = ((1− λ)u+ λv) + ((1− λ)x+ λy) ∈ C +D.

So C +D is convex. To show that C +D is compact, observe that C ×D is compact

in R2d. C + D is the image of C × D under the continuous mapping (x, y) → x + y.

So C + D is compact. Finally, choose x ∈ int C, y ∈ int D. Then clearly x + y ∈ int

(C+D). So C+D has nonempty interior and hence is a convex body. The reason that

λC is a convex body is similar and simpler, so we omit its proof.

Proposition 2.1.4. Let C,D ∈ C and λ ≥ 0. Then

hC+D = hC + hD, hλC = λhC .

Proof.

hC+D(u) = max{u · (x+ y) : x ∈ C, y ∈ D}

= max{u · x : x ∈ C}+ max{u · y : y ∈ D}

= hC(u) + hD(u) for u ∈ Rd.

And

hλC(u) = max{u · (λx) : x ∈ C}

= λmax{u · x : x ∈ C} = λhC(u) for u ∈ Rd

8
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2.2 Minkowski’s Theorem on Mixed Volumes

Theorem 2.2.1 (Minkowski’s theorem on mixed volumes). Let C1, . . . , Cm ∈ C. Then

there are coefficients V (Ci1 , . . . , Cid), 1 ≤ i1, . . . , id ≤ m, called mixed volumes, which

are symmetric in the indices and such that

V (λ1C1 + · · ·+ λmCm) =
m∑

i1,...,id=1

V (Ci1 , . . . , Cid)λi1 · · ·λidforλ1, . . . , λm ≥ 0. (2.1)

For the proof, see e.g. p.89 in [1].

Proposition 2.2.2. Let C,D,D2, . . . , Dd ∈ C. Then

V (λC + µD,D2, . . . , Dd) = λV (C,D2, . . . , Dd) + µV (D,D2, . . . , Dd)

for λ, µ ≥ 0.

Proof. Let λ, µ ≥ 0. The quantities

V (λ1(λC + µD) + λ2D2 + · · ·+ λdDd),

V ((λ1λ)C + (λ1µ)D + λ2D2 + · · ·+ λdDd)

have identical polynomial representations in λ1, . . . , λd. The coefficient of λ1 · · ·λd in

the first polynomial is

d!V (λC + µD,D2, . . . , Dd).

The coefficient of λ1 · · ·λd in the second polynomial can be obtained by representing

the second quantity as a polynomial in λ1λ, λ1µ, λ2, . . . , λd and then collecting λ1 · · ·λd.

Thus it is

d!λV (C,D2, . . . , Dd) + d!µV (D,D2, . . . , Dd)

Since the coefficients coincide, the proof is complete.

9
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Proposition 2.2.3. Let C ∈ C. Then

V (C, . . . , C) = V (C)

Proof. It is trivial if we put only one convex body C in (2.1) and let λ1 = 1. That is,

V (C) = V (C, . . . , C).

2.3 The Blaschke’s Selection Theorem

The Hausdorff metric δH on the space of nonempty compact convex sets is defined as

follows:

δH(C,D) = max{max
x∈C

min
y∈D

∥x− y∥,max
y∈D

min
x∈C

∥x− y∥} for C,D ∈ C.

If we consider a topology on the space of nonempty compact convex sets or on C, it is

always assumed that it is the topology induced by δH .

The following is the Blaschke’s selection theorem:

Theorem 2.3.1 (Blaschke’s selection theorem). Any bounded sequence of nonempty

compact convex sets in Rd contains a convergent subsequence.

Proof. Let C1, C2, · · · ∈ C be contained in a closed ball B. For the proof that the

sequence C1, C2, · · · , contains a convergent subsequence, the following will be shown

first:

The sequence C1, C2, . . . , contains a subsequence D1, D2, . . . , such that

δH(Dm, Dn) ≤
1

2min{m,n} for m,n = 1, 2, . . .
(2.2)

10
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For the proof of (2.2) the main step is to prove that

There are sequences C11, C12, . . . ;C21, C22, . . . ; . . . ,

where C11, C12, . . . is a subsequence of C1, C2, . . . , and each subsequent

sequence is a subsequence of the sequence preceding it, such that

δH(Dmi, Dmj) ≤
1

2m
for m = 1, 2, . . . , and i, j = 1, 2, . . .

(2.3)

The first step of the induction is similar to the step from m to m+1, thus only the latter

will be given. Let m ≥ 1 and assume that the first m sequences have been constructed

already and satisfy the inequality for 1, . . . ,m. Since the ball B is compact, it can be

covered by a finite family of closed balls, each of radius 1/2m+2 with centre in B. To

each convex body in B we associate all ball of this family which intersect it. Clear, these

balls cover the convex body. Since there are only finitely many subfamilies of this family

of balls, there must be one which corresponds to each convex body from an infinite

subsequence of Cm1, Cm2, . . . , say Cm+1 1, Cm+1 2, . . . Now, given i, j = 1, 2, . . . , for any

x ∈ Cm+1 i there is a ball in our subfamily which contains x. Hence ∥x− c∥ ≤ 1/2m+2,

where c is the centre of this ball. This ball also intersects Cm+1 j. Thus we may choose

y ∈ Cm+1 j with ∥y − c∥ ≤ 1/2m+2. This shows that, for each x ∈ Cm+1 i, there is

y ∈ Cm+1 j with ∥x− y∥ ≤ 1/2m+1. Similarly, for each y ∈ Cm+1 j there is x ∈ Cm+1 i

with ∥x− y∥ ≤ 1/2m+1. Thus

δH(Cm+1 i, Cm+1 j) ≤
1

2m+1
for i, j = 1, 2, . . .

The induction is thus complete, concluding the proof of (2.3). By considering the diag-

onal sequence D1 = C11, D2 = C22, . . . , we see that (2.2) is an immediate consequence

of (2.3).

11
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For the proof of the theorem it is sufficient to show that

D1, D2, · · · ,→ D, where D = ∩∞
n=1(Dn +

1

2n−1
Bd) ∈ C. (2.4)

(2.2) implies that

D1 +
1

2
Bd ⊃ D2, D2 +

1

22
⊃ D3, . . .

and thus,

D1 +Bd ⊃ D2 +
1

2
Bd ⊃ . . . (2.5)

Being the intersection of a decreasing sequence of non-empty compact convex sets (see

(2.4) and (2.5)), the set D is also non-empty, compact and convex. In order to prove

that D1, D2, · · · → D, let ϵ > 0. Then

D ⊂ Dn +
1

2n−1
Bd ⊂ Dn + ϵBd for n ≥ 1 + log2

1

ϵ
. (2.6)

Let G = int(D+ϵBd). The intersection of the following decreasing sequence of compact

sets

(D1 +Bd) \G ⊃ (D2 +
1

2
Bd) \G ⊃ . . .

is contained both in D (see (2.4)) and in Rd \G and thus is empty. This implies that,

from a certain index on, the sets in this sequence are empty. That is,

Dn ⊂ Dn +
1

2n−1
Bd ⊂ G ⊂ D + ϵBd for all sufficiently large n. (2.7)

(2.6) and (2.7) show that δH(Dn, D) ≤ ϵ for all sufficiently large n. Since ϵ > 0 was

arbitrary, D1, D2, · · · → D, concluding the proof of (2.4) and thus of the theorem.

Theorem 2.3.2. Let C1, C2, · · · ∈ C and C be a nonempty compact convex set such

that C1, C2, · · · → C. Then V (C1), V (C2), · · · → V (C).

Proof. Since volume and Hausdorff metric are translation invariant, we may assume

12
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that o ∈intC. Choose ρ > 0 such that ρBd ⊂ C. Since C1, C2, · · · → C, we have the

following: Let ϵ ∈ (0, ρ). Then the inclusions

Cn ⊂ C + ϵBd, C ⊂ Cn + ϵBd

hold for all sufficiently large n. Hence

Cn ⊂ C +
ϵ

ρ
C = (1 +

ϵ

ρ
)C,

(1− ϵ

ρ
)C +

ϵ

ρ
C = C ⊂ Cn +

ϵ

ρ
C.

By Proposition 2.1.4,

h(1− ϵ
ρ
)C + h ϵ

ρ
C = h(1− ϵ

ρ
)C+ ϵ

ρ
C ≤ hCn+

ϵ
ρ
C = hCn + h ϵ

ρ
C

Hence,

h(1− ϵ
ρ
)C ≤ hCn

And we obtain the inclusions

(1− ϵ

ρ
)C ⊂ Cn ⊂ (1 +

ϵ

ρ
)C

for all sufficiently large n. Therefore,

(1− ϵ

ρ
)dV (C) ≤ V (Cn) ≤ (1 +

ϵ

ρ
)dV (C).

for all sufficiently large n. Since ϵ ∈ (0, ρ) is arbitrary. So,

V (Cn) → V (C).

13



doi:10.6342/NTU202001018

2.4 The Brunn-Minkowski Inequality

Lemma 2.4.1. Let d ≥ 2. Then

(v
1

d−1 + w
1

d−1 )d−1(
V

v
+

W

w
) ≥ (V

1
d +W

1
d )d

for v, w, V,W > 0, where equality holds if and only if

v

V
d−1
d

=
w

W
d−1
d

.

Proof. By Holder’s inequality,

(v
1

d−1 + w
1

d−1 )
d−1
d (

V

v
+

W

w
)
1
d

= ((v
1
d )

d
d−1 + (w

1
d )

d
d−1 )

d−1
d (((

V

v
)
1
d )d + ((

W

w
)
1
d )d)

1
d

≥ V
1
d +W

1
d ,

where equality holds if and only if

v
1

d−1

V
v

=
w

1
d−1

W
w

⇔ v

V
d−1
d

=
w

W
d−1
d

.

Theorem 2.4.2 (classical Brunn-Minkowski inequality). Let C,D ∈ C. Then:

V (C +D)
1
d ≥ V (C)

1
d + V (D)

1
d , (2.8)

where equality holds if and only if C and D are homothetic. (A homothety is a compo-

14
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sition of a dilation and translation.)

Proof. For d = 1, C and D are intervals. Thus, V (C + D) = V (C) + V (D) always

holds. And C and D are homothetic.

Let d > 1 and assume that it holds for d− 1. If we prove it for d, then by induction we

complete the proof.

Let u ∈ Sd−1 and, for real t, let H(t) = {x : u · x = t} and H−(t) = {x : u · x ≤ t}.

Choose αC < βC such that H(αC) and H(βC) are support hyperplanes of C and simi-

larly for D. Then:

H(αC + αD) and H(βC + βD) are support hyperplanes of C +D. (2.9)

Let v(·) denote (d− 1)-dimensional volume and put:

vC(t) = v(C ∩H(t)), VC(t) = V (C ∩H−(t)) for αC ≤ t ≤ βC , and similarly for D.

(2.10)

The function t → VC(t)/V (C), for αC ≤ t ≤ βC , assumes the values 0, 1 for t = αC , βC ,

is continuous and strictly increasing for αC ≤ t ≤ βC and continuously differentiable

with derivative V ′
C(t)/V (C) = vC(t)/V (C) > 0 for αC < t < βC .

Consider its inverse function s → tC(s). Then:

tC(·) is defined for 0 ≤ s ≤ 1,

tC(0) = αC , tC(1) = βC ,

tC(·) is continuous for 0 ≤ s ≤ 1,

tC(·) is continuously differentiable with

t′C(s) =
V (C)

vC(tC(s))
> 0 for 0 < s < 1.

Analogous statements hold for D.

(2.11)

15
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Thus the function:

tC+D(·) = tC(·) + tD(·) is defined for 0 ≤ s ≤ 1,

tC+D(0) = αC + αD, tC+D(1) = βC + βD

tC+D(·) is continuously differentiable with

t′C+D(s) =
V (C)

vC(tC(s))
+

V (D)

vD(tD(s))
> 0 for 0 < s < 1.

(2.12)

Since H(tC+D(s)) = H(tC(s)) +H(tD(s)) for 0 ≤ s ≤ 1, we have:

(C +D) ∩H(tC+D(s)) ⊃ C ∩H(tC(s)) +D ∩H(tD(s)) for 0 ≤ s ≤ 1. (2.13)

Now (2.9), Fubini’s theorem, (2.12) and integration by substitution, (2.13), the induc-

tion hypothesis, (2.10), (2.12) and Lemma 2.4.1 together yield (2.8) as follows:

V (C +D) =

∫ βC+βD

αC+αD

v((C +D) ∩H(t))dt

=

∫ 1

0

v((C +D) ∩H(tC+D(s)))t
′
C+D(s)ds

≥
∫ 1

0

v(C ∩H(tC(s)) +D ∩H(tD(s)))t
′
C+D(s)ds

≥
∫ 1

0

(vC(tC(s))
1

d−1 + vD(tD(s))
1

d−1 )d−1(
V (C)

vC(tC(s))
+

V (D)

vD(tD(s))
)ds

≥
∫ 1

0

(V (C)
1
d + V (D)

1
d )dds = (V (C)

1
d + V (D)

1
d )d.

(2.14)

So we have proved the inequality (2.8). Then, assume that equality holds in (2.8). By

translating C and D, we may suppose that o is the centroid of both C and D. Let

u ∈ Sd−1. Since, by assumption, there is equality in (2.8), we have equality throughout

(2.14). Thus, in particular,

vC(tC(s))

V (C)
d−1
d

=
vD(tD(s))

V (D)
d−1
d

for 0 < s < 1,

16
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by Lemma 2.4.1. An application of (2.11) then shows that

t′C(s)

V (C)
1
d

=
t′D(s))

V (D)
1
d

for 0 < s < 1.

By fundamental theorem of calculus,

tC(s)

V (C)
1
d

=
tD(s))

V (D)
1
d

+ const for 0 < s < 1. (2.15)

Since o is the centroid of C, Fubini’s theorem, (2.10) and (2.11) show that

0 =

∫
C

u · xdx =

∫ βC

αC

tv(C ∩H(t))dt =

∫ βC

αC

tvC(t)dt

=

∫ 1

0

tC(s)vC(tC(s))t
′
C(s)ds = V (C)

∫ 1

0

tC(s)ds,

and similarly for D.

So, the constant in (2.15) is thus 0. And so

hD(u) = βD = tD(1) = (
V (D)

V (C)
)
1
d tC(1) = (

V (D)

V (C)
)
1
dβC = (

V (D)

V (C)
)
1
dhC(u).

Since u ∈ Sd−1 was arbitrary,

D = (
V (D)

V (C)
)
1
dC.

That is, C and D are homothetic.

Assume that C and D are homothetic, then the equality obviously holds in (2.8).

Hence we have proved the equality condition.

Corollary 2.4.3. Let C,D ∈ C. Then

V ((1− λ)C + λD)
1
d ≥ (1− λ)V (C)

1
d + λV (D)

1
d for 0 ≤ λ ≤ 1,

where equality holds for 0 < λ < 1 if and only if C and D are homothetic.

17
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Theorem 2.4.4. Let C,D ∈ C. Then the function

f(λ) = V ((1− λ)C + λD)
1
d is strictly concave for 0 ≤ λ ≤ 1

if C and D are not homothetic. And f is linear if C and D are homothetic.

Proof. Suppose that C and D are not homothetic. Let 0 ≤ λ1 < λ2 ≤ 1, 0 < λ < 1.

Then (1−λ1)C +λ1D and (1−λ2)C +λ2D are not homothetic (by Proposition 2.1.4).

Therefore, by Corollary 2.4.3,

f((1− λ)λ1 + λλ2) = V (((1− λ)(1− λ1) + λ(1− λ2))C + ((1− λ)λ1 + λλ2)D)
1
d

= V ((1− λ)((1− λ1)C + λ1D) + λ((1− λ2)C + λ2D))
1
d

> (1− λ)V ((1− λ1)C + λ1D)
1
d + λV ((1− λ2)C + λ2D)

1
d = (1− λ)f(λ1) + λf(λ2).

Suppose that C and D are homothetic. Then by Corollary 2.4.3, f(λ) = (1− λ)f(0) +

λf(1). That is, f is linear.

The following is a multiplicative version of the Brunn-Mindowski inequality.

Theorem 2.4.5. Let C,D ∈ C. Then:

V ((1− λ)C + λD) ≥ V (C)1−λV (D)λ for 0 ≤ λ ≤ 1,

where equality holds for 0 < λ < 1 if and only if C is a translation of D.

Proposition 2.4.6. The ordinary Brunn-Minkowski inequality and its multiplicative

version are equivalent in the sense that each easily implies the other.

Proof. We first assume that the ordinary Brunn-Minkowski inequality holds. Then

V ((1− λ)C + λD)
1
d ≥ V ((1− λ)C)

1
d + V (λD)

1
d

18



doi:10.6342/NTU202001018

= (1− λ)V (C)
1
d + λV (D)

1
d ≥ V (C)

1−λ
d V (D)

λ
d .

So,

V ((1− λ)C + λD) ≥ V (C)1−λV (D)λ.

Now assume that its multiplicative version holds. Define:

C̄ =
C

V (C)
1
d

, D̄ =
D

V (D)
1
d

, λ =
V (D)

1
d

V (C)
1
d + V (D)

1
d

.

Then

(1− λ)C̄ + λD̄ =
C +D

V (C)
1
d + V (D)

1
d

.

By multiplicative version of Brunn-Minkowski inequality,

V ((1− λ)C̄ + λD̄) ≥ V (C̄)1−λV (D̄)λ = 1.

So,

V (C +D) ≥ (V (C)
1
d + V (D)

1
d )d.

That is, the ordinary Brunn-Minkowski inequality holds.

Proof. of Theorem 2.4.5. By Proposition 2.4.6, the inequality holds.

To obtain the equality condition, observe the proof of Proposition 2.4.6. We know that

the ordinary Brunn-Minkowski inequality must hold for (1− λ)C and λD.

So they are homothetic. That implies C and D are homothetic.

And from the next inequality (the inequality of arithmetic and geometric means), we

know V (C) = V (D). So C is a translation of D.

Conversely, if C is a translation of D, then the equality trivially holds.
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2.5 Minkowski’s First and Second Inequalities

Theorem 2.5.1 (Minkowski’s first inequality). Let C,D ∈ C. Then

V (C,D, . . . , D)d ≥ V (C)V (D)d−1,

where equality holds if and only if C and D are homothetic.

Proof. By Theorem 2.4.4, the function f(λ) = V ((1 − λ)C + λD)
1
d , 0 ≤ λ ≤ 1, is

concave. And f is linear if and only if C and D are homothetic. By Theorem 2.2.1,

V ((1− λ)C + λD) =
d∑

i=0

(
d
i

)
(1− λ)iλd−iV (C, . . . , C,D . . . , D), (2.16)

with i C’s and (d− i) D’s in V (C, . . . , C,D . . . , D).

(2.16) shows that f is differentiable. Since f is concave, we have

V (D)
1
d − V (C)

1
d = f(1)− f(0) ≥ f ′(1) =

1

d
V (D)

1
d
−1[dV (D) + d(−1)V (C,D, . . . , D)].

Therefore,

V (C,D, . . . , D) ≥ V (C)
1
dV (D)1−

1
d .

Thus,

V (C,D, . . . , D)d ≥ V (C)V (D)d−1.

The equality condition was obtained since f(1)− f(0) = f ′(1) if and only if f is linear

if and only if C and D are homothetic.

Theorem 2.5.2 (Minkowski’s second inequality). Let C,D ∈ C. Then

V (C,D, . . . , D)2 ≥ V (C,C,D, . . . , D)V (D).

Proof. From the proof in the last theorem, f is concave. And (2.16) shows that f is
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twice differentiable. Thus f ′′(1) ≤ 0.

Now let’s compute it.

[f(λ)d]′ = df(λ)d−1f ′(λ).

[f(λ)d]′′ = [df(λ)d−1f ′(λ)]′ = d[(d− 1)f(λ)d−2(f ′(λ))2 + f(λ)d−1f ′′(λ)].

So,

[f(λ)d]′′|λ=1 = d[(d− 1)V (D)
d−2
d [V (D)

1
d
−1[V (D)− V (C,D, . . . , D)]]2 + V (D)

d−1
d f ′′(1)].

By (2.16),

d(d−1)V (D)+2(−1)d(d−1)V (C,D, . . . , D)+2
d(d− 1)

2
V (C,C,D, . . . , D) = [f(λ)d]′′|λ=1

= d[(d− 1)V (D)
d−2
d [V (D)

1
d
−1[V (D)− V (C,D, . . . , D)]]2 + V (D)

d−1
d f ′′(1)]

≤ d(d− 1)V (D)−1[V (D)− V (C,D, . . . , D)]2

Hence,

V (D)− 2V (C,D, . . . , D) + V (C,C,D, . . . , D)

≤ V (D)− 2V (C,D, . . . , D) + V (D)−1V (C,D, . . . , D)2.

So,

V (C,D, . . . , D)2 ≥ V (C,C,D, . . . , D)V (D).
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2.6 The Isoperimetric and the Isodiametric Inequal-

ity

Theorem 2.6.1 (isoperimetric inequality). Let C ∈ C(Rd). Then

S(C)d

V (C)d−1
≥ S(Bd)d

V (Bd)d−1
,

where equality holds if and only if C is a solid Euclidean ball. (S(·) is the surface area.)

Proof. First we note that

S(C) = lim
λ→0+

V (C + λBd)− V (C)

λ
= dV (Bd, C, . . . , C).

by Theorem 2.2.1.

By Minkowski’s first inequality,

V (Bd, C, . . . , C)d ≥ V (Bd)V (C)d−1,

where equality holds if and only if C and Bd is homothetic (and so C is a solid Euclidean

ball). Note that S(Bd) = dV (Bd), we thus obtain that

S(C)d

V (C)d−1
=

ddV (Bd, C, . . . , C)d

V (C)d−1
≥ ddV (Bd) =

ddV (Bd)d

V (Bd)d−1
=

S(Bd)d

V (Bd)d−1
.

where equality holds if and only if C is a ball.

Theorem 2.6.2 (isodiametric inequality). Let C ∈ C. Then

V (C) ≤ (
1

2
diamC)dV (Bd),

where equality holds if and only if C is a solid Euclidean ball.
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Proof. Suppose that C is centrally symmetric. Without loss of generality, we may

assume that o is the centre of C. Then C ⊂ (1
2
diamC)Bd and thus

V (C) ≤ (
1

2
diamC)dV (Bd),

where equality holds if and only if C = (1
2
diamC)Bd.

Now, suppose that C is not centrally symmetric. Then Corollary 2.4.3 shows that

V (C)
1
d =

1

2
V (C)

1
d +

1

2
V (−C)

1
d < V (

1

2
(C − C))

1
d =

1

2
V (C − C)

1
d ,

and thus:

V (C) <
1

2d
V (C − C).

Since C − C is origin-symmetric:

V (C − C) ≤ (
1

2
diam(C − C))dV (Bd)

by the first case. Next note that

diam(C − C) = max{∥(u− v)− (x− y)∥ : u, v, x, y ∈ C}

≤ max{∥u− v∥ : u, v ∈ C}+ max{∥x− y∥ : x, y ∈ C} = 2diamC.

So,

V (C) <
1

2d
(diamC)dV (Bd) = (

1

2
diamC)dV (Bd).
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Chapter 3

The work of Böröczky, Lutwak,

Yang and Zhang

3.1 Some Preparations

A boundary point x ∈ ∂C of the convex body C is said to have u ∈ Sd−1 as one of its

outer unit normals provided x · u = hC(u). A boundary point is said to be singular if

it has more than one unit normal vector. It is well known (see, e.g., [2]) that the set of

singular boundary points of a convex body has (d− 1)-dimensional Hausdorff measure

Hd−1 equal to 0.

Let C be a convex body in Rd and νC : ∂C → Sd−1 the generalized Gauss map. For

arbitrary convex bodies, the generalized Gauss map is properly defined as a map into

subsets of Sd−1. However, Hd−1-almost everywhere on ∂C it can be defined as a map

into Sd−1. For each Borel set ω ⊂ Sd−1, the inverse spherical image ν−1
C (ω) of ω is the

set of all boundary points of C which have an outer unit normal belonging to the set

ω. Associated with each convex body C in Rd is a Borel measure SC on Sd−1 called the

Aleksandrov-Fenchel-Jessen surface area measure of C, defined by

SC(ω) = Hd−1(ν−1
C (ω))
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for each Borel set ω ⊂ Sd−1; i.e., SC(ω) is the (d − 1)-dimensional Hausdorff measure

of the set of all points on ∂C that have a unit normal that lies in ω. Let C be a convex

body in Rd that contains the origin in its interior. The cone-volume measure VC of C

is a Borel measure on the unit sphere Sd−1 defined for a Borel ω ⊂ Sd−1 by

VC(ω) =
1

d

∫
x∈ν−1

C (ω)

x · νC(x)dHd−1(x),

and thus

dVC =
1

d
hCdSC . (3.1)

Since,

V (C) =
1

d

∫
u∈Sd−1

hC(u)dSC(u), (3.2)

we can turn the cone-volume measure into a probability measure on the unit sphere by

normalizing it by the volume of the body. The cone-volume probability measure V̄C of

C is defined

V̄C =
1

V (C)
VC .

Suppose C,D are convex bodies in Rd that contain the origin in their interiors. For

p > 0, the Lp-mixed volume Vp(C,D) can be defined as

Vp(C,D) =

∫
Sd−1

(
hD

hC

)pdVC . (3.3)

Suppose that the function kt(u) = k(t, u) : I × Sd−1 → (0,∞) is continuous, where

I ⊂ R is an interval. For fixed t ∈ I, let

Kt = ∩u∈Sd−1{x ∈ Rd : x · u ≤ k(t, u)}
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be the Wulff shape associated with the function kt. We shall make use of the well-known

fact that

hKt ≤ kt and hKt = kt a.e. w.r.t. SKt ,

for each t ∈ I. If kt happens to be the support function of a convex body then hKt = kt,

everywhere.

The following lemma (proved in e.g. [5]) will be needed.

Lemma 3.1.1. Suppose k(t, u) : I × Sd−1 → (0,∞) is continuous, where I ⊂ R is an

open interval. Suppose also that the convergence in

∂k(t, u)

∂t
= lim

s→0

k(t+ s, u)− k(t, u)

s

is uniform on Sd−1. If {Kt}t∈I is the family of Wulff shapes associated with kt, then

dV (Kt)

dt
=

∫
Sd−1

∂k(t, u)

∂t
dSKt(u).

Suppose C,D are convex bodies in Rd. The inradius r(C,D) and outradius R(C,D)

of C with respect to D are defined by

r(C,D) = sup{t > 0 : x+ tD ⊂ C and x ∈ Rd},

R(C,D) = inf{t > 0 : x+ tD ⊃ C and x ∈ Rd}.

Obviously from the definition, it follows that

r(C,D) = 1/R(D,C).
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If C,D happen to be origin-symmetric convex bodies, then obviously

r(C,D) = min
u∈Sd−1

hC(u)

hD(u)
and R(C,D) = max

u∈Sd−1

hC(u)

hD(u)
. (3.4)

It will be convenient to always translate C and D so that for 0 ≤ t < r = r(C,D), the

function kt = hC − thD is strictly positive. Let Ct denote the Wulff shape associated

with the function kt; i.e., let Ct be the convex body given by

Ct = {x ∈ Rd : x · u ≤ hC(u)− thD(u) for all u ∈ Sd−1}. (3.5)

Note that C0 = C, and that obviously

lim
t→0

Ct = C0 = C.

From definition (3.5) and Corollary 2.1.2 we immediately have

Ct = {x ∈ Rd : x+ tD ⊂ C}. (3.6)

Using (3.6) we can extend the definition of Ct for the case where t = r = r(C,D) :

Cr = {x ∈ Rd : x+ rD ⊂ C}.

It is not hard to show (see e.g. [2]) that Cr is a degenerate convex set (i.e. has empty

interior) and that

lim
t→r

V (Ct) = V (Cr) = 0. (3.7)

From Lemma 3.1.1 and (3.3), we obtain the well-known fact that for 0 < t < r =
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r(C,D),

d

dt
V (Ct) =

∫
Sd−1

∂k(t, u)

∂t
dSCt(u) =

∫
Sd−1

(−hD)
d

hCt

dVCt(u) = −dV1(Ct, D).

Integrating both sides, and using (3.7), gives

Lemma 3.1.2. Suppose C and D are convex bodies, and for 0 ≤ t < r = r(C,D), the

body Ct is the Wulff shape associated with the positive function kt = hC − thD. Then,

for 0 ≤ t ≤ r = r(C,D),

V (C)− V (Ct) = d

∫ t

0

V1(Cs, D)ds,

where Cr = {x ∈ Rd : x+ rD ⊂ C}.

3.2 The log-Brunn-Minkowski Inequality

Assume C,D ∈ C, o ∈ int C∩ int D,λ ∈ [0, 1]. Then the geometric Minkowski combi-

nation, (1− λ) · C +o λ ·D, is defined by

(1− λ) · C +o λ ·D = ∩u∈Sd−1{x ∈ Rd : x · u ≤ hC(u)
1−λhD(u)

λ}.

For p > 0, the Minkowski-Firey Lp-combination (or simply Lp-combination), (1 − λ) ·

C +p λ ·D, is defined by

(1− λ) · C +p λ ·D = ∩u∈Sd−1{x ∈ Rd : x · u ≤ ((1− λ)hC(u)
p + λhD(u)

p)1/p}.

We list the main problems as follows.

The log-Brunn-Minkowski inequality:

Problem 3.2.1. Show that if C and D are origin-symmetric convex bodies in Rd, then
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for all λ ∈ [0, 1],

V ((1− λ) · C +o λ ·D) ≥ V (C)1−λV (D)λ. (3.8)

The Lp-Brunn-Minkowski inequality:

Problem 3.2.2. Suppose p > 0. Show that if C and D are origin-symmetric convex

bodies in Rd, then for all λ ∈ [0, 1],

V ((1− λ) · C +p λ ·D) ≥ V (C)1−λV (D)λ. (3.9)

The log-Minkowski inequality:

Problem 3.2.3. Show that if C and D are origin-symmetric convex bodies in Rd, then

∫
Sd−1

log hD

hC

dV̄C ≥ 1

d
log V (D)

V (C)
. (3.10)

The Lp-Minkowski inequality:

Problem 3.2.4. Suppose p > 0. Show that if C and D are origin-symmetric convex

bodies in Rd, then

(

∫
Sd−1

(
hD

hC

)pdV̄C)
1
p ≥ (

V (D)

V (C)
)
1
d . (3.11)

For the rest of this section, we suppose that each convex bodies contain the origin

in its interior.

From the definition we can see that

(1− λ) · C +1 λ ·D = (1− λ)C + λD.

Actually, for fixed C,D, λ, the Lp-combination (1 − λ) · C +p λ · D is increasing with

respect to set inclusion, as p increases.
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That is, if 0 < p < q, then

(1− λ) · C +p λ ·D ⊂ (1− λ) · C +q λ ·D.

To see this, it suffices to show that

((1− λ)hC(u)
p + λhD(u)

p)1/p ≤ ((1− λ)hC(u)
q + λhD(u)

q)1/q ∀u ∈ Sd−1.

Suppose 0 < p < q. Since f(x) = xq/p is convex, by Jensen’s inequality,

((1− λ)hp
C + λhp

D)
q/p ≤ (1− λ)h

p(q/p)
C + λh

p(q/p)
D = (1− λ)hq

C + λhq
D.

So we have proved it.

Next, we claim that

(1− λ) · C +o λ ·D = lim
p→0+

((1− λ) · C +p λ ·D).

Since the monotonicity of (1− λ) · C +p λ ·D, it suffices to show that

hC(u)
1−λhD(u)

λ = lim
p→0+

((1− λ)hp
C + λhp

D)
1/p.

To see this, we apply L’Hospital’s rule as follows:

lim
p→0+

1

p
log((1− λ)hp

C + λhp
D) = lim

p→0+

(1− λ)hp
C loghC + λhp

D loghD

(1− λ)hp
C + λhp

D

= (1− λ) loghC + λ loghD = logh1−λ
C hλ

D.

So,

h1−λ
C hλ

D = exp(log(h1−λ
C hλ

D)) = lim
p→0+

((1− λ)hp
C + λhp

D)
1/p.
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So far, we have proved that if 0 < p ≤ 1 ≤ q,

(1− λ) · C +o λ ·D ⊂ (1− λ) · C +p λ ·D ⊂ (1− λ)C + λD ⊂ (1− λ) · C +q λ ·D

This fact tell us that:

”The log-Brunn-Minkowski inequality”⇒”The Lp-Brunn-Minkowski inequality”⇒”The

classical Brunn-Minkowski inequality”⇒”The Lq-Brunn-Minkowski inequality”, where

0 < p ≤ 1 ≤ q.

For the other inequalities, there is similar relationship as follows:

”The log-Minkowski inequality”⇒”The Lp-Minkowski inequality”⇒”The Lq-Minkowski

inequality”, where 0 < p < q.

To see this, like what we have done, by Jensen’s inequality, if 0 < p < q,

(

∫
Sd−1

(
hD

hC

)pdV̄C)
q/p ≤

∫
Sd−1

((
hD

hC

)p)q/pdV̄C =

∫
Sd−1

(
hD

hC

)qdV̄C .

So,

(

∫
Sd−1

(
hD

hC

)pdV̄C)
1/p ≤ (

∫
Sd−1

(
hD

hC

)qdV̄C)
1/q.

And by L’Hospital’s rule,

lim
p→0+

log(
∫
Sd−1

(
hD

hC

)pdV̄C)
1/p = lim

p→0+

1

p
log(

∫
Sd−1

(
hD

hC

)p)dV̄C

= lim
p→0+

∫
Sd−1(

hD

hC
)p log hD

hC
dV̄C∫

Sd−1(
hD

hC
)pdV̄C

=

∫
Sd−1

log hD

hC

dV̄C

And

(

∫
Sd−1

(
hD

hC

)pdV̄C)
1/p ≥ (

V (D)

V (C)
)
1
d
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if and only if

log(
∫
Sd−1

(
hD

hC

)pdV̄C)
1/p ≥ log(V (D)

V (C)
)
1
d =

1

d
log V (D)

V (C)
.

Hence the relationship was proved.

3.3 Equivalence of the Lp-Brunn-Minkowski and the

Lp-Minkowski Inequalities

In this section, we show that for each fixed p ≥ 0 the Lp-Brunn-Minkowski inequality

and the Lp-Minkowski inequality are equivalent in that one is an easy consequence of

the other. In particular, the log-Brunn-Minkowski inequality are equivalent.

Suppose p > 0. If C and D are convex bodies that contain the origin in their interior

and s, t ≥ 0 (not both zero) the Lp-Minkowski combination s ·C +p t ·D, is defined by

s · C +p t ·D = {x ∈ Rd : x · u ≤ (shC(u)
p + thD(u)

p)1/p for all u ∈ Sd−1}.

We see that for a convex body C and real s ≥ 0 the relationship between the Lp-scalar

multiplication, s · C, and Minkowski scalar multiplication sC is given by:

s · C = s
1
pC.

Suppose p > 0 is fixed and suppose the following ”weak” Lp-Brunn-Minkowski inequal-

ity holds for all origin-symmetric convex bodies C and D in Rd such that V (C) = 1 =

V (D) :

V ((1− λ) · C +p λ ·D) ≥ 1, (3.12)

for all λ ∈ (0, 1). We claim that from this it follows that the following seemingly

”stronger” Lp-Brunn-Minkowski inequality holds: if C and D are origin-symmetric
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convex bodies in Rd, then

V (s · C +p t ·D)
p
d ≥ sV (C)

p
d + tV (D)

p
d , (3.13)

for all s, t ≥ 0. To see this assume that the ”weak” Lp-Brunn-Minkowski inequality

(3.12) holds and that C and D are arbitrary origin-symmetric convex bodies. Define

tha volume-normalized bodies C̄ = V (C)−
1
dC and D̄ = V (D)−

1
dD. Then (3.12) gives

V ((1− λ) · C̄ +p λ · D̄) ≥ 1. (3.14)

Let λ = V (D)
p
d (V (C)

p
d + V (D)

p
d )−1. Then

(1− λ) · C̄ +p λ · D̄ =
1

(V (C)
p
d + V (D)

p
d )

1
p

(C +p D).

Therefore, from (3.14), we get

V (C +p D)
p
d ≥ V (C)

p
d + V (D)

p
d .

If we now replace C with s ·C and D with t ·D and note that V (s ·C)
p
d = sV (C)

p
d , we

obtain the desired ”stronger” Lp-Brunn-Minkowski inequality (3.13).

Lemma 3.3.1. Suppose p > 0. When restricted to origin-symmetric convex bodies in

Rd, the Lp-Brunn-Minkowski inequality (3.9) and the Lp-Minkowski inequality (3.11)

are equivalent.

Proof. Suppose C and D are fixed origin-symmetric convex bodies in Rd. For 0 ≤ λ ≤ 1,

let

Qλ = (1− λ) · C +p λ ·D;

i.e., Qλ is the Wulff shape associated with the function qλ = ((1−λ)hp
C +λhp

D)
1
p . It will

33



doi:10.6342/NTU202001018

be convenient to consider qλ as being defined for λ in the open interval (−ϵ0, 1 + ϵ0),

where ϵ0 > 0 is chosen so that for λ ∈ (−ϵ0, 1 + ϵ0), the function qλ is strictly positive.

We first assume that the Lp-Minkowski inequality (3.11) holds. From (3.2), the fact

that hQλ
= ((1−λ)hp

C +λhp
D)

1
p a.e. with respect to the surface area measure SQλ

, (3.1)

and (3.3), and finally the Lp-Minkowski inequality (3.11), we have

V (Qλ) =
1

d

∫
Sd−1

hQλ
dSQλ

=
1

d

∫
Sd−1

((1− λ)hp
C + λhp

D)h
1−p
Qλ

dSQλ

= (1− λ)V (Qλ)

∫
Sd−1

(
hC

hQλ

)pdV̄Qλ
+ λV (Qλ)

∫
Sd−1

(
hD

hQλ

)pdV̄Qλ

≥ V (Qλ)
1− p

d ((1− λ)V (C)
p
d + λV (D)

p
d ). (3.15)

This and the inequality of arithmetic and geometric means gives

V (Qλ) ≥ ((1− λ)V (C)
p
d + λV (D)

p
d )

d
p ≥ V (C)1−λV (D)λ, (3.16)

which is the Lp-Brunn-Minkowski inequality (3.9).

Now assume that the Lp-Brunn-Minkowski inequality (3.9) holds. As was seen at

the beginning of this section, this inequality implies the seemingly stronger Lp-Brunn-

Minkowski inequality (3.13). But this inequality tell us that the function f : [0, 1] →

(0,∞), given by f(λ) = V (Qλ)
p
d for λ ∈ [0, 1], satisfies that

f(λ) ≥ (1− λ)f(0) + λf(1). (3.17)

Now, the convergence as λ → 0 in

qλ − q0
λ

→ h1−p
C

p
(hp

D − hp
C) =

h1−p
C hp

D − hC

p
,
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is uniform on Sd−1. By Lemma 3.1.1, (3.3) and (3.1), and (3.2),

dV (Qλ)

dλ
|λ=0 =

∫
Sd−1

h1−p
C hp

D − hC

p
dSC =

d

p
(Vp(C,D)− V (C)).

Therefore, (3.17) yields

V (C)
p
d
−1(Vp(C,D)− V (C)) = f ′(0) = lim

λ→0+

f(λ)− f(0)

λ

≥ lim
λ→0+

λ(f(1)− f(0))

λ
= f(1)− f(0) = V (D)

p
d − V (C)

p
d .

Then
Vp(C,D)

V (C)
≥ (

V (D)

V (C)
)
p
d ,

which gives the Lp-Minkowski inequality (3.11).

Lemma 3.3.2. For origin-symmetric convex bodies in Rd, the log-Brunn-Minkowski

inequality (3.8) and the log-Minkowski inequality (3.10) are equivalent.

Proof. Suppose C and D are fixed origin-symmetric convex bodies in Rd. For 0 ≤ λ ≤ 1,

let

Qλ = (1− λ) · C +o λ ·D;

i.e., Qλ is the Wulff shape associated with the function qλ = h1−λ
C hλ

D. It will be con-

venient to consider qλ as being defined for λ in the open interval (−ϵ0, 1 + ϵ0), where

ϵ0 > 0.

We first assume that the log-Minkowski inequality (3.10) holds. From the fact that

hQλ
= h1−λ

C hλ
D a.e. with respect to the surface area measure SQλ

, and the log-Minkowski

inequality (3.10), we have

0 =
1

dV (Qλ)

∫
Sd−1

hQλ
log h1−λ

C hλ
D

hQλ

dSQλ
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= (1− λ)
1

dV (Qλ)

∫
Sd−1

hQλ
log hC

hQλ

dSQλ
+ λ

1

dV (Qλ)

∫
Sd−1

hQλ
log hD

hQλ

dSQλ

≥ (1− λ)
1

d
log V (C)

V (Qλ)
+ λ

1

d
log V (D)

V (Qλ)
(3.18)

=
1

d
log V (C)1−λV (D)λ

V (Qλ)
.

This gives the log-Brunn-Minkowski inequality (3.8).

Now assume that the log-Brunn-Minkowski inequality (3.8) holds. It tell us that the

function f : [0, 1] → (0,∞), given by f(λ) = logV (Qλ) for λ ∈ [0, 1], satisfies that

f(λ) ≥ (1− λ)f(0) + λf(1). (3.19)

Now, the convergence as λ → 0 in

qλ − q0
λ

→ hC log hD

hC

,

is uniform on Sd−1. By Lemma 3.1.1,

dV (Qλ)

dλ
|λ=0 =

∫
Sd−1

hC log hD

hC

dSC = d

∫
Sd−1

log hD

hC

dVC .

Therefore, (3.19) yields

d

∫
Sd−1

log hD

hC

dV̄C =
1

V (Q0)

dV (Qλ)

dλ
|λ=0 = f ′(0) = lim

λ→0+

f(λ)− f(0)

λ

≥ lim
λ→0+

λ(f(1)− f(0))

λ
= f(1)− f(0) = logV (D)− logV (C),

which gives the log-Minkowski inequality (3.10).
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3.4 Blaschke’s Extension of the Bonnesen Inequal-

ity

In [6], E. Lutwak proved that V (C,D) = V1(C,D). That is,

V (C,D) =
1

d

∫
Sd−1

hD(u)dSC(u) (3.20)

From (3.20) we see that for convex bodies C,D,D′, we have

D ⊂ D′ ⇒ V (C,D) ≤ V (C,D′),

with equality if and only if hD = hD′ a.e. w.r.t. SC .

(3.21)

Theorem 3.4.1. If C,D are plane convex bodies, then for r(C,D) ≤ t ≤ R(C,D),

V (C)− 2tV (C,D) + t2V (D) ≤ 0.

The inequality is strict whenever r(C,D) < t < R(C,D). When t = r(C,D) equality

will occur if and only if C is the Minkowski sum of a dilation of D and a line segment.

When t = R(C,D) equality will occur if and only if D is the Minkowski sum of a

dilation of C and a line segment.

Proof. Let r = r(C,D), and suppose t ∈ [0, r]. Recall from (3.5) that

Ct = {x ∈ Rd : x · u ≤ hC(u)− thD(u) for all u ∈ Sd−1},

and that from (3.6), we have

Ct + tD ⊂ C. (3.22)

But (3.22), together with the monotonicity (3.21), Proposition 2.2.2 (linearity), together
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with Proposition 2.2.3 gives

V (C,D) ≥ V (Ct + tD,D) = V (Ct, D) + tV (D). (3.23)

Now Lemma 3.1.2 and (3.23) gives,

V (C)− V (Ct) = 2

∫ t

0

V (Cs, D)ds

≤ 2

∫ t

0

(V (C,D)− sV (D))ds (3.24)

= 2tV (C,D)− t2V (D).

Thus,

V (C)− 2tV (C,D) + t2V (D) ≤ V (Ct). (3.25)

From (3.23) and (3.24), we see that equality (3.25) holds if and only if,

V (C,D) = V (Cs + sD,D) ∀s ∈ [0, t], (3.26)

which, from (3.22) and (3.21), gives

hC = hCs + shD a.e. w.r.t SD ∀s ∈ [0, t].

By (3.7) we know V (Cr) = 0 and thus Cr is a line segment, possibly a single point.

Therefore from (3.25) we have

V (C)− 2rV (C,D) + r2V (D) ≤ 0. (3.27)

Suppose now the equality holds in (3.27), that is,

V (C)− 2rV (C,D) + r2V (D) = 0. (3.28)
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Then, by (3.26) we have,

V (C,D) = V (Cr + rD,D).

But this in (3.28) gives:

V (C)− 2rV (Cr + rD,D) + r2V (D) = 0,

which, using linearity , can be rewritten as

V (C)− 2rV (Cr, D)− r2V (D) = 0,

and since V (Cr) = 0, using linearity, as

V (C) = V (Cr + rD).

This and that Cr + rD ⊂ C forces that Cr + rD = C. That is, C is the Minkowski

sum of a dilation of D and the line segment Cr. Conversely, suppose that C is the

Minkowski sum of a dilation of D and a line segment L. That is, C = sD + L. Then

r(C,D) = s, Cr = L. So, C = Cr + rD. Therefore,

V (C)− 2rV (C,D) + r2V (D) = V (Cr + rD)− 2rV (Cr + rD,D) + r2V (D)

= (V (Cr) + 2rV (Cr, D) + r2V (D))− (2rV (Cr, D) + 2r2V (D)) + r2V (D) = V (Cr) = 0.

Hence, V (C) − 2rV (C,D) + r2V (D) = 0 if and only if C is the Minkowski sum of a

dilation of D and a line segment.

Let r′ = r(D,C) = 1/R(C,D), the inequality (3.27) tell us that

V (D)− 2r′V (D,C) + r′2V (C) ≤ 0,
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with equality if and only if D is the Minkowski sum of a dilation of C and a line segment.

That is

V (C)− 2RV (C,D) +R2V (D) ≤ 0, where R = R(C,D).

Finally, let p(t) = V (C)− 2tV (C,D) + t2V (D). since p is a monic quadratic function ,

it is a strictly convex function. So,

p((1− λ)r + λR) < (1− λ)p(r) + λp(R) ≤ 0 ∀0 < λ < 1.

Thus,

V (C)− 2tV (C,D) + t2V (D) < 0 for r(C,D) < t < R(C,D).

3.5 Uniqueness of Planar Cone-Volume Measure

Lemma 3.5.1. If C,D are origin-symmetric plane convex bodies, then

V (D)

∫
S1

hC

hD

dVC ≤ V (C)

∫
S1

hD

hC

dVC , (3.29)

with equality if and only if C and D are dilates, or C and D are parallelograms with

parallel sides.

Proof. Since C and D are origin symmetric, from (3.4) we have

r(C,D) ≤ hC(u)

hD(u)
≤ R(C,D).

for all u ∈ S1. Thus, from Theorem 3.4.1, we get

V (C)− 2
hC(u)

hD(u)
V (C,D) + (

hC(u)

hD(u)
)2V (D) ≤ 0.
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Integrating both sides of this, with respect to the measure hDdSC , and using (3.20) and

(3.2), gives

0 ≥
∫
S1

(V (C)− 2
hC(u)

hD(u)
V (C,D) + (

hC(u)

hD(u)
)2V (D))hD(u)dSC(u)

= −2V (C)V (C,D) + V (D)

∫
S1

hC(u)
2

hD(u)
dSC(u).

So,

V (D)

∫
S1

hC

hD

dVC =
1

2
V (D)

∫
S1

hC(u)
2

hD(u)
dSC(u) ≤ V (C)V (C,D) = V (C)

∫
S1

hD

hC

dVC .

This yields the desired inequality (3.29). Suppose there is equality in (3.29). Thus,

V (C)− 2
hC(u)

hD(u)
V (C,D) + (

hC(u)

hD(u)
)2V (D) = 0, for all u ∈ suppSC . (3.30)

where suppSC = {ν(x) : x ∈ ∂C, x is not singular} = {u ∈ Sd−1 : SC(Br(u)∩Sd−1) > 0

for all r > 0}.

If C and D are dilates, we’re done. So assume that C and D are not dilates. But then

r(C,D) < R(C,D). From Theorem 3.4.1, we know that when

r(C,D) <
hC(u)

hD(u)
< R(C,D),

it follows that

V (C)− 2
hC(u)

hD(u)
V (C,D) + (

hC(u)

hD(u)
)2V (D) < 0,

and thus we conclude that

hC(u)/hD(u) ∈ {r(C,D), R(C,D)} for all u ∈ suppSC . (3.31)

Note that since C is origin symmetric suppSC is origin symmetric as well. Either there
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exists u0 ∈ suppSC so that hC(u0)/hD(u0) = r(C,D) or hC(u0)/hD(u0) = R(C,D).

Suppose that hC(u0)/hD(u0) = r(C,D). Then from (3.30) and the equality conditions

of Theorem 3.4.1 we know that C must be a dilation of the Minkowski sum of D and

a line segment. But C and D are not dilates, so there exists an x0 ̸= 0 so that

hC(u) = |x0 · u|+ r(C,D)hD(u),

for all unit vectors u. This together with hC(u0)/hD(u0) = r(C,D) shows that x0 is

orthogonal to u0 and that the only unit vectors at which hC/hD = r(C,D) are u0 and

−u0. But suppSC must contain at least one unit vector u1 ∈ suppSC other than ±u0.

From (3.31), and the fact that the only unit vectors at which hC/hD = r(C,D) are

u0 and −u0, we conclude hC(u1)/hD(u1) = R(C,D) and by the same argument we

conclude that the only unit vectors at which hC/hD = R(C,D) are u1 and −u1. Now

(3.31) allow us to conclude that

suppSC = {±u0,±u1}.

This implies that C is a parallelogram. Since C is the Minkowski sum of a dilate of D

and a line segment, D must be a parallelogram with sides parallel to those of C. If we

had assumed that hC(u0)/hD(u0) = R(C,D), rather than r(C,D), the same argument

would lead to the same conclusion.

It is easily seen that the equality holds in (3.29) if C and D are dilates. Now suppose

that C and D are parallelograms with parallel sides. Then

hC(u) = a1|v1 · u|+ a2|v2 · u|, hD(u) = b1|v1 · u|+ b2|v2 · u|,
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where v1, v2 ∈ S1 and a1, a2, b1, b2 > 0. Then suppSC = {±v⊥1 ,±v⊥2 }, while

V̄C({v⊥1 }) = V̄C({−v⊥1 }) = V̄C({v⊥2 }) = V̄C({−v⊥2 }) = 1/4,

and |v1 · v⊥2 | = |v2 · v⊥1 |.

Therefore,

V (D)

∫
S1

hC

hD

dV̄C = b1b2|v1 · v⊥2 |
1

2
(
a1
b1

+
a2
b2
) =

1

2
(a1b2 + a2b1).

and

V (C)

∫
S1

hD

hC

dV̄C = a1a2|v1 · v⊥2 |
1

2
(
b1
a1

+
b2
a2

) =
1

2
(a1b2 + a2b1).

Hence,

V (D)

∫
S1

hC

hD

dVC = V (C)

∫
S1

hD

hC

dVC .

That is, the equality holds in (3.29).

Theorem 3.5.2. If C,D are origin-symmetric plane convex bodies that have the same

cone-volume measure, then C = D or else C and D are parallelograms with parallel

sides.

Proof. Assume that VC = VD and C ̸= D, then

V (C) =

∫
S1

dVC =

∫
S1

dVD = V (D).

So C and D are not dilates (otherwise C = D). Thus inequality (3.29) becomes

∫
S1

hC

hD

dVC ≤
∫
S1

hD

hC

dVC .
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And by exchanging the roles of C and D,

∫
S1

hD

hC

dVD ≤
∫
S1

hC

hD

dVD.

Both inequality have equality condition: C and D are parallelograms with parallel sides.

Observe that

∫
S1

hC

hD

dVC ≤
∫
S1

hD

hC

dVC =

∫
S1

hD

hC

dVD ≤
∫
S1

hC

hD

dVD =

∫
S1

hC

hD

dVC .

So the equalities hold. That is, C and D are parallelograms with parallel sides.

3.6 Minimizing the Logarithmic Mixed Volume

Lemma 3.6.1. Suppose C is a plane origin-symmetric convex body, with V (C) = 1,

that is not a parallelogram. Suppose also that Pk is an unbounded sequence of origin-

symmetric parallelograms all of which have orthogonal diagonals, and such that V (Pk) ≥

2. Then, the sequence ∫
S1

loghPk
(u)dVC(u)

is not bounded from above.

Proof. Let u1,k, u2,k be orthogonal unit vectors along the diagonals of Pk. Denote the

vertices of Pk by ±h1,ku1,k,±h2,ku2,k. Without loss of generality, assume that 0 < h1,k ≤

h2,k. The condition V (Pk) ≥ 2 is equivalent to h1,kh2,k ≥ 1. The support function of Pk

is given by

hPk
(u) = max{h1,k|u · u1,k|, h2,k|u · u2,k|}, (3.32)

for u ∈ S1. Since S1 is compact, the sequences u1,k and u2,k have convergent subse-

quences. Again, without loss of generality, we may assume that the sequences u1,k and
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u2,k are themselves convergent with

lim
k→∞

u1,k = u1 and lim
k→∞

u2,k = u2,

where u1 and u2 are orthogonal (since u1 · u2 = limk→∞ u1,k · u2,k = 0).

It is easy to see that if the cone-volume measure, VC({±u1}), of the two-point set {±u1}

is positive, then C contains a parallelogram whose area is 2VC({±u1}). Since C itself

is not a parallelogram and V (C) = 1, it must be the case that

VC({±u1}) <
1

2
. (3.33)

For δ ∈ (0, 1
3
), consider the neighborhood, Uδ, of {±u1}, on S1,

Uδ = {u ∈ S1 : |u · u1| > 1− δ}.

Since VC(S
1) = V (C) = 1, we see that for all δ ∈ (0, 1

3
),

VC(Uδ) + VC(U
c
δ ) = 1, (3.34)

where U c
δ is the complement of Uδ.

Since the Uδ are decreasing (with respect to set inclusion) in δ and have a limit of

{±u1},

lim
δ→0+

VC(Uδ) = VC({±u1}).

This together with (3.33), shows the existence of a δ0 ∈ (0, 1
3
) such that

VC(Uδ0) <
1

2
.
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But this implies that there is a small ϵ0 ∈ (0, 1
2
) so that

τ0 = VC(Uδ0)−
1

2
+ ϵ0 < 0. (3.35)

This together with (3.34) gives

VC(Uδ0) =
1

2
− ϵ0 + τ0 and VC(U

c
δ0
) =

1

2
+ ϵ0 − τ0. (3.36)

Since ui,k converge to ui, we have, |ui,k − ui| ≤ δ0 whenever k is sufficiently large (for

both i = 1 and i = 2). Then for u ∈ Uδ0 and k sufficiently large, we have

|u · u1,k| ≥ |u · u1| − |u · (u1,k − u1)| ≥ |u · u1| − |u1,k − u1| ≥ 1− δ0 − δ0 ≥ δ0,

where the last inequality follows from the fact that δ0 < 1
3
. For all u ∈ S1, we know

that |u · u1|2 + |u · u2|2 = 1. Thus, for u ∈ U c
δ0
, we have |u · u2| ≥ (1 − (1 − δ0)

2)
1
2 =

(δ0(2− δ0))
1
2 > (5δ20)

1
2 > 2δ0, which shows that when k is sufficiently large,

|u · u2,k| ≥ |u · u2| − |u · (u2,k − u2)| ≥ |u · u2| − |u2,k − u2| ≥ 2δ0 − δ0 = δ0.

From the last paragraph and (3.32) is follows that when k is sufficiently large,

hPk
(u) ≥

 δ0h1,k if u ∈ Uδ0 ,

δ0h2,k if u ∈ U c
δ0
.

(3.37)

By (3.37) and (3.34), (3.36), the fact that 0 < h1,k ≤ h2,k together with (3.35), and

finally the fact that h1,kh2,k ≥ 1 together with ϵ0 ∈ (0, 1
2
), we see that for sufficiently

large k, ∫
S1

loghPk
dVC =

∫
Uδ0

loghPk
dVC +

∫
Uc
δ0

loghPk
dVC

≥ log δ0 + VC(Uδ0) logh1,k + VC(U
c
δ0
) logh2,k
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= log δ0 + (
1

2
+ τ0 − ϵ0) logh1,k + (

1

2
− τ0 + ϵ0) logh2,k

= log δ0 + 2ϵ0 logh2,k + (
1

2
− ϵ0) log(h1,kh2,k) + τ0(logh1,k − logh2,k)

≥ log δ0 + 2ϵ0 logh2,k.

Since Pk is not bounded, the sequence h2,k is not bounded from above. Thus, the

sequence ∫
S1

loghPk
dVC

is not bounded from above.

Lemma 3.6.2. Suppose C is a plane origin-symmetric convex body that is not a paral-

lelogram, then there exists a plane origin-symmetric convex body C0 so that V (C0) = 1

and ∫
S1

loghQdVC ≥
∫
S1

loghC0dVC

for every plane origin-symmetric convex body Q with V (Q) = 1.

Proof. By letting C̄ = V (C)−
1
2C, we may assume that V (C) = 1. Consider the mini-

mization problem,

inf
∫
S1

loghQdVC ,

where the infimum is taken over all plane origin-symmetric convex bodies Q with

V (Q) = 1. Suppose that Qk is a minimizing sequence; i.e., Qk is a sequence of origin-

symmetric convex bodies with V (Qk) = 1 and such that
∫
S1 loghQk

dVC tends to the

infimum (which may be −∞). We shall show that the sequence Qk is bounded and the

infimum is finite.

By The John Ellipsoid Theorem (see e.g. [4]), there exist ellipses Ek centered at the

origin so that

Ek ⊂ Qk ⊂
√
2Ek. (3.38)
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Let u1,k, u2,k, be the principal directions of Ek so that

h1,k ≤ h2,k, where h1,k = hEk
(u1,k) and h2,k = hEk

(u2,k).

Let Pk be the origin-centered parallelogram that has vertices {±h1,ku1,k,±h2,ku2,k}.

(Observe that by the Principal Axis Theorem the diagonals of Pk are perpendicular.)

Since Ek ⊂
√
2Pk, it follows from (3.38) that

Qk ⊂
√
2Ek ⊂

√
2(
√
2Pk) = 2Pk.

So,

Pk ⊂ Qk ⊂ 2Pk. (3.39)

From this and V (Qk) = 1, we see that V (Pk) ≥ 1
4
.

Assume that Qk is not bounded. Then Pk is not bounded (since Pk ⊃ Qk/2). Applying

Lemma 3.6.1 to
√
8Pk shows that the sequence

∫
S1 loghPk

dVC =
∫
S1 logh√

8Pk
dVC −

log
√
8 is not bounded from above. Therefore, from (3.39) we see that the sequence∫

S1 loghQk
dVC cannot be bounded from above. However, this is impossible because Qk

was chosen to be a minimizing sequence.

We conclude that Qk is bounded. By Blaschke’s Selection Theorem (Theorem 2.3.1),

Qk has a convergent subsequence that converges to an origin-symmetric convex body

C0, with V (C0) = 1 (by Theorem 2.3.2). (intC0 ̸= ϕ since V (C0) = 1.) It follows that∫
S1 loghC0dVC is the desired infimum.

3.7 The log-Minkowski Inequality

In [3], they proved Problem 3.10, Problem 3.8, Problem 3.11 and Problem 3.9 for C,D

are in the plane, with their equality conditions. First, the log-Minkowski inequality:
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Theorem 3.7.1. If C and D are plane origin-symmetric convex bodies, then

∫
S1

log hD

hC

dV̄C ≥ 1

2
log V (D)

V (C)
, (3.40)

with equality if and only if either C and D are dilates or when C and D are parallelograms

with parallel sides.

Proof. Without loss of generality, we can assume that V (C) = V (D) = 1. We shall

establish the theorem by proving

∫
S1

loghDdVC ≥
∫
S1

loghCdVC ,

with equality if and only if either C and D are dilates or when C and D are parallelo-

grams with parallel sides.

First, assume that C is not a parallelogram. Consider the minimization problem

min
∫
S1

loghQdVC ,

taken over all plane origin-symmetric convex bodies Q with V (Q) = 1. Let C0 denote a

solution, whose existence is guaranteed by Lemma 3.6.2. (Our aim is to prove that C0 =

C and thereby demonstrate that C itself can be the only solution to this minimization

problem.)

Suppose f is an arbitrary but fixed even continuous function on S1. Consider the

deformation of hC0 , defined on R× S1, by

qt(u) = q(t, u) = hC0(u)e
tf(u).

Let Qt be the Wulff shape associated with qt. Observe that Qt is an origin symmetric

convex body and that since q0 is the support function of the convex body C0, we have
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Q0 = C0.

Since C0 is an assumed solution of the minimization problem, the function g1 defined

on R by

g1(t) = V (Qt)
− 1

2 exp{
∫
S1

loghQtdVC} = exp{
∫
S1

loghQt/V (Qt)−1/2dVC},

attains a minimal value at t = 0 (since V (Qt/V (Qt)
−1/2) = 1). Since hQt ≤ qt, this

function is dominated by the differentiable function g2 defined on R by

g2(t) = V (Qt)
− 1

2 exp{
∫
S1

log qtdVC}.

Since q0 = hC0 = hQ0 ,

g2(0) = g1(0) ≤ g1(t) ≤ g2(t) ∀t ∈ R.

Thus, g′2(0) = 0. Note that V (Q0) = V (C0) = 1. By Lemma 3.1.1,

0 = g′2(0) = −1

2

∫
S1

hC0(u)f(u)dSC0(u) exp{
∫
S1

log q0dVC}

+ exp{
∫
S1

log q0dVC}
∫
S1

hC0(u)f(u)

hC0(u)
dVC(u).

So, ∫
S1

f(u)dVC0(u) =

∫
S1

f(u)dVC(u).

Since f was an arbitrary even continuous function,

VC0 = VC .

By Theorem 3.5.2, and the assumption that C is not a parallelogram, we conclude that

C0 = C.
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Thus, for each D such that V (D) = 1,

∫
S1

loghDdVC ≥
∫
S1

loghCdVC ,

with equality if and only if C = D. This is the desired result when C is not a parallel-

ogram.

Now assume that C is a parallelogram whose support function is given by

hC(u) = a1|v1 · u|+ a2|v2 · u|,

where v1, v2 ∈ S1 and a1, a2 > 0. Then suppSC = {±v⊥1 ,±v⊥2 }, while |v1 · v⊥2 | = |v2 · v⊥1 |

and VC({±v⊥i }) = 2a1a2|v1 · v⊥2 |. So that 4a1a2|v1 · v⊥2 | = V (C) = 1. And we can see

that

exp
∫
S1

loghDdVC = exp(1
2
(loghD(v

⊥
1 ) + loghD(v

⊥
2 ))) =

√
hD(v⊥1 )hD(v⊥2 ). (3.41)

The parallelogram circumscribed about D with sides parallel to those of C has volume

4
hD(v

⊥
1 )

|v1 · v⊥2 |
hD(v

⊥
2 ) = 16a1a2hD(v

⊥
1 )hD(v

⊥
2 ),

and thus, 16a1a2hD(v
⊥
1 )hD(v

⊥
2 ) ≥ V (D) = 1, or equivalently

hD(v
⊥
1 )hD(v

⊥
2 ) ≥

1

16a1a2
,

with equality if and only if D itself is a parallelogram with sides parallel to those of C.

Thus, by (3.41),

∫
S1

loghDdVC = log
√

hD(v⊥1 )hD(v⊥2 ) ≥ log
√

1

16a1a2
.
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the quality holds if and only if

hD(v
⊥
1 )hD(v

⊥
2 ) =

1

16a1a2
;

i.e., if and only if D is a parallelogram with sides parallel to those of C.

The log-Brunn-Minkowski inequality:

Theorem 3.7.2. If C and D are origin-symmetric convex bodies in the plane, then for

all λ ∈ [0, 1],

V ((1− λ) · C +o λ ·D) ≥ V (C)1−λV (D)λ. (3.42)

When λ ∈ (0, 1), equality in the inequality holds if and only if C and D are dilates or

C and D are parallelograms with parallel sides.

Proof. Lemma 3.3.2 shows that the log-Minkowski inequality of Theorem 3.7.1 yields

the log-Brunn-Minkowski inequality (3.42) of Theorem 3.7.2. To obtain the equality

conditions of (3.42), look the proof of Lemma 3.3.2. Suppose the equality in (3.42)

holds. The equality in (3.18) must hold. By the equality conditions in Theorem 3.7.1,

we know that either C and Qλ are dilates or when C and Qλ are parallelograms with

parallel sides. And either D and Qλ are dilates or when D and Qλ are parallelograms

with parallel sides. All the four possible cases satisfies the equality condition in Theorem

3.7.2. i.e., C and D are dilates or C and D are parallelograms with parallel sides.

Now suppose that C and D are dilates or C and D are parallelograms with parallel

sides. If C and D are dilates, then C, D and Qλ are dilates. So the equality in (3.18)

holds. Therefore the equality in (3.42) holds.

If C and D are parallelograms with parallel sides such that

hC(u) = a1|v1 · u|+ a2|v2 · u|, hD(u) = b1|v1 · u|+ b2|v2 · u|.
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where v1, v2 ∈ S1 and a1, a2, b1, b2 > 0. Let A = |v1 · v⊥2 | = |v2 · v⊥1 |. Then

hC(v
⊥
1 ) = a2A, hC(v

⊥
2 ) = a1A and hD(v

⊥
1 ) = b2A, hD(v

⊥
2 ) = b1A.

So,

Qλ ⊂ {x : |x · v⊥1 | ≤ a1−λ
2 bλ2A, |x · v⊥2 | ≤ a1−λ

1 bλ1A}.

Then

V (C)1−λV (D)λ ≤ V (Qλ) ≤ 4
a1−λ
2 bλ2A

A
a1−λ
1 bλ1A

= (4
a2A

A
a1A)

1−λ(4
b2A

A
b1A)

λ = V (C)1−λV (D)λ.

Therefore,

V (Qλ) = V (C)1−λV (D)λ.

The Lp-Minkowski inequality:

Theorem 3.7.3. Suppose p > 0. If C and D are origin-symmetric convex bodies in the

plane, then,

(

∫
S1

(
hD

hC

)pdV̄C)
1
p ≥ (

V (D)

V (C)
)
1
2 , (3.43)

with equality if and only if C and D are dilates.

Proof. By (3.40) and Jensen’s inequality,

(

∫
S1

(
hD

hC

)pdV̄C)
1
p = exp{1

p
log(

∫
S1

(
hD

hC

)pdV̄C)} ≥ exp{1
p

∫
S1

log(hD

hC

)pdV̄C}

= exp{
∫
S1

log(hD

hC

)dV̄C} ≥ exp{1
2

log V (D)

V (C)
} = (

V (D)

V (C)
)
1
2 .

Suppose the equality in (3.43) holds. The equality condition of (3.40) shows that either

C and D are dilates or when C and D are parallelograms with parallel sides.
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If C and D are dilates, we are done. If not, then C and D are parallelograms with

parallel sides.

The equality condition of Jensen’s inequality shows that

(
hD

hC

)p = constant on suppVC .

Since C and D are parallelograms with parallel sides, C and D are dilates. Conversely,

suppose that C and D are dilates, says, D = tC for t > 0. Then

(

∫
S1

(
hD

hC

)pdV̄C)
1
p = (tp)

1
p = t = (t2)

1
2 = (

V (D)

V (C)
)
1
2 .

The Lp-Brunn-Minkowski inequality:

Theorem 3.7.4. Suppose p > 0. If C and D are origin-symmetric convex bodies in the

plane, then for all λ ∈ [0, 1],

V ((1− λ) · C +p λ ·D) ≥ V (C)1−λV (D)λ. (3.44)

When λ ∈ (0, 1), equality in the inequality holds if and only if C = D.

Proof. Lemma 3.3.1 shows that the Lp-Minkowski inequality of Theorem 3.7.3 yields

the Lp-Brunn-Minkowski inequality of Theorem 3.7.4.

To obtain the equality condition, suppose the equality holds for some λ ∈ (0, 1). Look

the proof of Lemma 3.3.1. The inequality in (3.15) and (3.16) must be equality.

From the equality conditions of Theorem 3.7.3, we know that equality in inequality

(3.15) implies that C and D are dilates. But the inequality of arithmetic and geometric

means in (3.16) has equality condition V (C) = V (D). Thus we conclude that equality

in (3.44) implies that C = D.
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Suppose C = D, Then the equality in (3.44) trivially holds (Since (1−λ) ·C +p λ ·C =

C).
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