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Abstract

Convex geometry is a branch of geometry that studies convex functions and convex
sets. Because of the strong property, convexity, this research area has many success-
ful theories and applications. In convex geometry, there is an inequality concerning
the relationship between the volumes of two convex bodies, and the volume of their
Minkowski sum. This important inequality is called Brunn-Minkowski inequality.

The classical Brunn-Minkowski inequality is valid for every two convex bodies. For
origin-symmetric convex bodies, stronger inequalities are studied and conjectured by
Borocezky, Lutwak, Yang and Zhang. In their work, these inequalities were proved for
origin-symmetric convex bodies in two dimensional Euclidean space.

In this thesis we will introduce some basic notions in convex geometry and then
the work of Boroczky, Lutwak, Yang and Zhang, in which they proved the log-Brunn-

Minkowski inequality.

key words: convex bodies, Minkowski sum, mixed volume, Brunn-Minkowski in-

equality, cone-volume measure.

doi:10.6342/NTU202001018



Contents

1 Introduction 1
2 Preliminaries 4
2.1  Convex Bodies and Support Functions . . . . . . ... ... ... ... 4
2.2 Minkowski’s Theorem on Mixed Volumes . . . . . . . . ... ... ... 9
2.3 The Blaschke’s Selection Theorem . . . . . . . . ... ... ... .... 10
2.4 The Brunn-Minkowski Inequality . . . . . . .. .. .. ... ... ... 14
2.5 Minkowski’s First and Second Inequalities . . . . . . . ... ... ... 20
2.6 The Isoperimetric and the Isodiametric Inequality . . . . . . . .. . .. 22
3 The work of Boroczky, Lutwak, Yang and Zhang 24
3.1 Some Preparations . . . . .. ... ... 24
3.2 The log-Brunn-Minkowski Inequality . . . . . .. ... ... ... ... 28

3.3 Equivalence of the L,-Brunn-Minkowski and the L,-Minkowski Inequalities 32

3.4 Blaschke’s Extension of the Bonnesen Inequality . . . . . . .. ... .. 37
3.5 Uniqueness of Planar Cone-Volume Measure . . . . . . ... ... ... 40
3.6 Minimizing the Logarithmic Mixed Volume . . . . . . . . . .. ... .. 44
3.7 The log-Minkowski Inequality . . . . . ... ... ... ... .. .... 48

doi:10.6342/NTU202001018



Chapter 1

Introduction

Convex geometry is a branch of geometry that studies convex functions and convex
sets. Because of the strong property, convexity, this research area has many successful
theories and applications.

Among those important properties, in particular the supporting functions of convex
bodies play an important role since one of them uniquely determines the other. In this
dissertation, we will mainly study several important properties about the volumes of
convex bodies.

First, the Minkowski’s theorem on mixed volume says that the volume of a linear
combination of convex bodies is a polynomial in the coefficients of the linear combination
and the coefficients of the polynomial are the mixed volumes.

Moreover Blaschke’s selection theorem also says that any bounded sequence of
nonempty compact convex sets in R? contains a convergent subsequence with respect
to some particular metric. It can be used to show the existence of the solution of some
problems.

In convex geometry, there is an extremely important inequality concerning the rela-
tionship between the volumes of two convex bodies, and the volume of their Minkowski

sum. This important inequality is called the Brunn-Minkowski inequality.
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There are many applications of the Brunn-Minkowski inequality, for example the
isoperimetric inequality and the isodiametric inequality which will be introduced in the
end of chapter 2.

The classical Brunn-Minkowski inequality is valid for every two convex bodies. For
origin-symmetric convex bodies, stronger inequalities are studied and conjectured in
[3]. In their work, these inequalities were proved for origin symmetric convex bodies in
two dimensional Euclidean space.

In chapter 3, we introduce the methods in [3], which proved the log-Minkowski
inequality and hence the log-Brunn-Minkowski inequality. Although we have attempted
to prove some similar results in three dimensional Euclidean spaces but failed, we hope
to continue to pursue them in the near future.

Below is the organization of this dissertation. In the first section, some definitions
and some lemmas are prepared, in particular the definition of the cone-volume measure
is very important.

The main inequalities such as log-Brunn-Minkowski inequality were listed in the
second section. Then two strong-weak relationships of these inequalities are proved.

Next, the log/L,-Brunn-Minkowski inequalities and the log/L,-Minkowski inequal-
ities are showed to be equivalent in the sense that one can easily imply the other.

The Blaschke’s extension of the Bonnesen inequality says that V(C) —2tV(C, D) +
t*V (D) < 0 for r(C,D) <t < R(C, D). For the definitions, see section 3.1.

Uniqueness of planar cone-volume measure, which tells us what could happen if two
convex bodies have the same cone-volume measure, is very important in the proof of
the log-Minkowski inequality.

The finial tool, Lemma 3.6.2, guarantees the existence of the minimum of | g1 log hqdVe
with some constraints. With these tools, the log-Minkowski inequality can finally be
proved.

NOTE: This dissertation is based on Gruber’s book [1] and a paper of Bordczky,
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Lutwak, Yang and Zhang [3]. The basic notions in chapter 2 come from [1] and chapter

3 is mainly from [3].
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Chapter 2

Preliminaries

2.1 Convex Bodies and Support Functions

Let B4 = {z € R?: |z| < 1} be the unit closed ball with center o in R?%. Let intC' stands
for the interior of C. For z,y € R? let [z,y] = {(1 = Nz + Ay : 0 < X\ < 1} be the
line segment with endpoints z,y. A set C' in R? is convex if [x,y] C CVz,y € C. Let

f:C — R be a real function on C. The function f is convex if C' is convex and
F((L =Nz +Ay) < (1= A)f(2) + Af(y) for 2,y € C,O0< A< L
f is strictly convex if C' is convex and
flA=Nx+Ay) < Q=N f(x)+ Af(y) forz,y e Cix #y,0 < A< 1.

f is called concave, respectively, strictly concave if —f is convex, respectively, strictly
convex. V(C) denotes the volume of C. That is, the Lebesgue measure of C' in R?. A
convex body is a compact convex set with nonempty interior. Let C = C(R%) be the

space of convex bodies in R
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Let he : R? — R be the support function of C, defined by
he(u) = max{u -z : x € C} for u € R

For u € St let Ho(u) = {x : u-x = ho(u)} be the support hyperplane of C' with
exterior normal vector w, and H; (u) = {z : u-z < he(u)} be the support halfspace of
C' with exterior normal vector w.

For a convex body C, define a mapping pc : R* — C such that
7 = pe(@)l = min 2 — yl.

That is, for each z € RY, the point pc(x) € C is the one closest to z. Since C' is closed,
it is clear that po(x) exists for each € RY. To see that pc(r) is unique for each z € RY,
assume that there are points y,z € C,y # z, both having minimum distance from zx.

Then ||y — z|| = ||z — z|| and therefore by the parallelogram law,
Iy +2) = 22> + [ly — 2|* = 2ly — =[* + 2l|z — z[* = 4]y — 2|*.
Since y # z,
1 o _ 1 2 2
2+ =l = Sy +2) 20 <y — ol

That is,

1
15 +2) —all <lly = zll = ||z - «||.

Since %(y + z) € [y, 2] C C, there is a point in C' which is closer to z, this contradicts

our choice of y, z. The uniqueness follows, and so p¢c is well-defined.

Theorem 2.1.1. Let C € C(R?). Then

C = Nyesa-1Hp (u).
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Proof. Clearly, C C H;(u) Vu € 4. So,
CC ﬂuesd—lHa(u).

Now let z € R?\ C, then z # pc(z) since po(z) € C. Let

wo 2mpelz) o ga
|z —pe(2)||

Suppose he(u) # u-pe(z), then by definition of the support functions, he(u) > u-pe(2).
So there exists y € C' such that u-y > u-pc(z). Therefore we can see that u-(y—pc(z)) >
0. Let D = ||z — pc(2)||,v =y — pc(z2), and = pc(z) + Mv € [pe(z),y] C C, where
A € [0, 1]. Then

Iz = =[|* = [[Du = M||* = D*[[ull® = 2DA(u - v) + A ||

2D(u - v)

= D* = A2D(u-v) = [lol*A] < D* = Jlz = p(2)|I* as 0 < A < =7

Let A = min{1, %}, we conclude that
[ = 2] < llpe(z) - =]
This contradicts the definition of pc(2). So,
he(u) =u - pe(z).

Observe that

w-z=u- (pe(2) + |2 — po(u)lu) > u- po(z) = he(u).
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So, z ¢ H. (u). Therefore,

z2 & Nyegi-1 Heg (u).

Hence,

C D ﬂuegdleE(U,).
The result follows. OJ

Corollary 2.1.2. Let C, D € C, then

C C D if and only if he < hp.

Proof. Suppose that C' C D, then Yu € R",

he(u) =max{u-z:x € C} <max{u-z:z € D} = hp(u).

Suppose that he < hp, then Yu € 5471

Ho(u)={z:u-z <hc(u)} C{z:u-z <hpu)}=hy(u).

By Theorem 2.1.1,

C - muesdleé(u) C muesdlel;(U/) - D

So, the result follows. O

This corollary also tell us that a convex body is uniquely determined by its support
function.
Now, let’s define the Minkowski sum and the scalar multiplication in C :
C+D={z+y:xze€C,yec D} for C,D € C is the Minkowski sum of C' and D.
AC ={ x:2 € C} for C €C,\ € R is the multiplication of C' with A.
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Proposition 2.1.3. Let C;D € C and A > 0. Then C' + D, \C € C.

Proof. Let u+ x,v+1y € C+ D where u,v € C,z,y € D, and let 0 < A < 1. Then

(1=XN(u+z)+AXv+y)=((1=Nu+)+ (1 =Nxz+Ay) € C+D.

So C' + D is convex. To show that C' 4+ D is compact, observe that C' x D is compact
in R?¢. C' + D is the image of C' x D under the continuous mapping (z,y) — = + ¥.
So C' + D is compact. Finally, choose x € int C,y € int D. Then clearly x 4+ y € int
(C+ D). So C'+ D has nonempty interior and hence is a convex body. The reason that

AC' is a convex body is similar and simpler, so we omit its proof. [

Proposition 2.1.4. Let C;D € C and A > 0. Then

hcyp = he + hp, hac = Ahe.

Proof.
heip(u) =max{u- (x +y) :x € C,y € D}
=max{u-z:2 € C}+max{u-y:ye D}
= ho(u) + hp(u) for u € RY.
And

hao(u) = max{u - (\z) : x € C'}

= Amax{u -z :x € C} = Mo (u) for u € R?

] doi:10.6342/NTU202001018



2.2 Minkowski’s Theorem on Mixed Volumes

Theorem 2.2.1 (Minkowski’s theorem on mixed volumes). Let Ci,...,Cy, € C. Then
there are coefficients V(Cyy,y ..., Ci,), 1 < iy,...,iq < m, called mized volumes, which

are symmetric in the indices and such that

VMG + - 4+ AnC) = > V(Ciyoo Ci) iy - Nigford, . Ay > 0. (2.1)
i1 b=

For the proof, see e.g. p.89 in [1].

Proposition 2.2.2. Let C, D, D, ..., Dy € C. Then
V()\C + [IID, DQ, ey Dd) = )\V(C, Dg, ey Dd) + /LV(D, DQ, ce ,Dd)

for A, u > 0.

Proof. Let A, n > 0. The quantities
V(M(AC + D) + AeDy + - - + A\gDa),

V((MA)C + (AMp)D 4+ AoDy + -+ - + X\gDy)

have identical polynomial representations in Aq,...,As. The coefficient of A;--- Ay in
the first polynomial is
AWV (AC + uD, Ds, ..., Dy).

The coefficient of A;--- Ay in the second polynomial can be obtained by representing
the second quantity as a polynomial in A\, A1 pt, Ao, ..., Ay and then collecting A - - - Ag.
Thus it is

dI\V(C, Dy, ...,Dg)+d\uV (D, Dy, ..., Dy)

Since the coefficients coincide, the proof is complete. [
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Proposition 2.2.3. Let C € C. Then

2.3 The Blaschke’s Selection Theorem

The Hausdorff metric 6% on the space of nonempty compact convex sets is defined as

follows:
5H C.D) = 3 _ mi — for C.D e C.
(€, D) max{rileac)vigélg I yH’r;lEal%( :cel(rll Iz =y} for C,

If we consider a topology on the space of nonempty compact convex sets or on C, it is
always assumed that it is the topology induced by 6.

The following is the Blaschke’s selection theorem:

Theorem 2.3.1 (Blaschke’s selection theorem). Any bounded sequence of nonempty

compact convex sets in R? contains a convergent subsequence.

Proof. Let C1,Cy,--- € C be contained in a closed ball B. For the proof that the
sequence C7,Cy, -+, contains a convergent subsequence, the following will be shown

first:

The sequence C, Cy, ..., contains a subsequence Dy, Dy, ..., such that
(2.2)

1
§"(Dp, D,) < ———— form,n =1,2, ...

— 9min{m,n}

10 doi:10.6342/NTU202001018



For the proof of (2.2) the main step is to prove that

There are sequences C1q,Cla,...;C5,Cog, .5,

where C11, C1a, ... is a subsequence of C, (s, ..., and each subsequent
(2.3)
sequence is a subsequence of the sequence preceding it, such that

1
6" (Dyniy Dinj) < o form=1,2,..., andi,j=1,2,...

The first step of the induction is similar to the step from m to m-+1, thus only the latter
will be given. Let m > 1 and assume that the first m sequences have been constructed
already and satisfy the inequality for 1,...,m. Since the ball B is compact, it can be
covered by a finite family of closed balls, each of radius 1/2™"2 with centre in B. To
each convex body in B we associate all ball of this family which intersect it. Clear, these
balls cover the convex body. Since there are only finitely many subfamilies of this family
of balls, there must be one which corresponds to each convex body from an infinite
subsequence of C,1, Cpno, - .., say Crv1 1, Ciat 2, - .- Now, given 4,7 = 1,2, ... for any
x € Cyyp1 4 there is a ball in our subfamily which contains z. Hence ||z — c|| < 1/2™*2,
where c is the centre of this ball. This ball also intersects Cy,1; ;. Thus we may choose
y € Cpy1j with |Jly — ¢|| < 1/2™2. This shows that, for each z € Cy,41 4, there is
y € Cy1 j with ||z — y|| < 1/2™*L Similarly, for each y € Cpyq j there is © € Cpyyq 4
with ||z — y|| < 1/2™1. Thus

1 .
§H(Cm+1 inerl j) S W for 1,] = 1,2, e

The induction is thus complete, concluding the proof of (2.3). By considering the diag-
onal sequence Dy = C1, Dy = Ca, ..., we see that (2.2) is an immediate consequence

of (2.3).

11 doi:10.6342/NTU202001018



For the proof of the theorem it is sufficient to show that

1
Dy, Dy, -+ ,— D, where D = N2, (D,, + 2n_le) eC. (2.4)
(2.2) implies that
1 4 1
D1+§B DDQ,DQ"_? DD3,...
and thus,
1
D1+BdDD2+§BdD... (2.5)

Being the intersection of a decreasing sequence of non-empty compact convex sets (see
(2.4) and (2.5)), the set D is also non-empty, compact and convex. In order to prove

that Dy, Dy,--- — D, let ¢ > 0. Then

DcCD,+

1
2n_1Bd C D, + eB® for n > 1+ log, = (2.6)

Let G = int(D+eB%). The intersection of the following decreasing sequence of compact
sets

(D1+Bd)\GD(D2+%Bd)\G3...

is contained both in D (see (2.4)) and in R?\ G and thus is empty. This implies that,

from a certain index on, the sets in this sequence are empty. That is,

D, Cc D, + BYC G C D + eB* for all sufficiently large n. (2.7)

1
2n—1
(2.6) and (2.7) show that §7(D,, D) < e for all sufficiently large n. Since € > 0 was
arbitrary, Dy, Dy, --- — D, concluding the proof of (2.4) and thus of the theorem. [

Theorem 2.3.2. Let C,Cy,--- € C and C be a nonempty compact convex set such

that 01, 02, -« — (. Then V(Ol)7 V<02>a T V(O)

Proof. Since volume and Hausdorff metric are translation invariant, we may assume

192 doi:10.6342/NTU202001018



that o €intC. Choose p > 0 such that pB¢ C C. Since O}, Cs,--- — C, we have the

following: Let € € (0, p). Then the inclusions
C,cC+eB*CcC,+eB?

hold for all sufficiently large n. Hence

c,cC+c=01+90,
p p

1-Sc+Sc=cco,+ c
P P p

By Proposition 2.1.4,
ha-<9c +hee = ha-<cvcc < ho,rso = he, + hec

Hence,

ha-<c < he,
And we obtain the inclusions

€ €
1--)CcCC,C(1+-)C
(1=-) (1+-)

for all sufficiently large n. Therefore,
(1= 21V(C) < V(G < (1+ )V (C)

for all sufficiently large n. Since € € (0, p) is arbitrary. So,

V(C,) = V(C).

13
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2.4 The Brunn-Minkowski Inequality
Lemma 2.4.1. Let d > 2. Then

Vs iy wiy
v w

(v + wT)

for v, w, VW > 0, where equality holds if and only if

w

d—1 °
W —a

v
d—1
d

%

Proof. By Holder’s inequality,

Theorem 2.4.2 (classical Brunn-Minkowski inequality). Let C, D € C. Then:

=

V(C + D)i > V(C)i + V(D)4, (2.8)

where equality holds if and only if C' and D are homothetic. (A homothety is a compo-

14 doi:10.6342/NTU202001018



sition of a dilation and translation.)

Proof. For d = 1, C' and D are intervals. Thus, V(C' + D) = V(C) + V(D) always
holds. And C' and D are homothetic.

Let d > 1 and assume that it holds for d — 1. If we prove it for d, then by induction we
complete the proof.

Let w € S%1 and, for real ¢, let H(t) ={z:u-x =t} and H (t) ={z:u-z < t}.
Choose a¢ < B¢ such that H(ae) and H(f¢) are support hyperplanes of C' and simi-
larly for D. Then:

H(ac + ap) and H(Bc + Bp) are support hyperplanes of C' + D. (2.9)

Let v(-) denote (d — 1)-dimensional volume and put:

ve(t) =v(CNH()),Vo(t) =V(CNH (t)) for ac <t < e, and similarly for D.

(2.10)

The function t — Vi (t)/V(C), for ac <t < B¢, assumes the values 0, 1 for ¢t = a¢, G¢,
is continuous and strictly increasing for ac < t < ¢ and continuously differentiable
with derivative V/(t)/V(C) = ve(t)/V(C) > 0 for ac < t < fe.

Consider its inverse function s — t¢(s). Then:

to(+) is defined for 0 < s <1,

tc(0) = ac, te(1) = Be,

to(+) is continuous for 0 < s < 1,

(2.11)
to(+) is continuously differentiable with

e
fels) = o lals))

Analogous statements hold for D.

>0for 0 <s < 1.

15 doi:10.6342/NTU202001018



Thus the function:

terp() =to() +tp(+) is defined for 0 < s <1,

tcrn(0) = ac + ap,tern(l) = Be + Bp
(2.12)
torp(+) is continuously differentiable with

g V@) VD)
teyp(s) = oo te(s)) + () >0for0<s<l.

Since H(toyp(s)) = H(te(s)) + H(tp(s)) for 0 < s < 1, we have:

(C+ D) N Hlterp(s) D CNH(te(s) + DN H(tp(s) for 0<s < 1. (2.13)

Now (2.9), Fubini’s theorem, (2.12) and integration by substitution, (2.13), the induc-

tion hypothesis, (2.10), (2.12) and Lemma 2.4.1 together yield (2.8) as follows:

Bc+Bp
V(C + D) :/ o(C + D) A H(L)dt

ac+ap

— /0 v((C’ + D) N H(tCJrD(S)))tIC-i-D(S)dS

z/lv(CmH(tC(s))+DmH(tD(s)))t’C+D(s)ds (2.14)
' Sty V(O V(D) .

> [ elto) ™ +uplto(s) 1) (G s+ — s

> [((V(©} +VID)hyids = (V(C)i + V(D)

So we have proved the inequality (2.8). Then, assume that equality holds in (2.8). By
translating C' and D, we may suppose that o is the centroid of both C' and D. Let
u € S471. Since, by assumption, there is equality in (2.8), we have equality throughout

(2.14). Thus, in particular,

UC(tC(*i)) _ vp(tn(s)) for0<s<1

v(o)YT  V(D)T

—

16 doi:10.6342/NTU202001018



by Lemma 2.4.1. An application of (2.11) then shows that

for 0 < s < 1.

te(s) _ tp(s))
V(C)i  V(D)i

By fundamental theorem of calculus,

t t
c(s) — D<S))1 + const for 0 < s < 1. (2.15)
a

V(C)a V(D)

Since o is the centroid of C, Fubini’s theorem, (2.10) and (2.11) show that

O:/Cu-:cd:c:/jctv(CHH(t))dt:/ﬁctvc(t)dt

C ac

:/O tc(s)vc(tc(s))t’c(s)dS:V(C’)/O tc(s)ds,

and similarly for D.

So, the constant in (2.15) is thus 0. And so

hp(u) = Bp =tp(1) = (

Since u € S was arbitrary,

That is, C' and D are homothetic.
Assume that C' and D are homothetic, then the equality obviously holds in (2.8).

Hence we have proved the equality condition. [

Corollary 2.4.3. Let C, D € C. Then
V((1=NC+AD)a > (1= ANV (C)a+ V(D) for 0 < A< 1,

where equality holds for 0 < A < 1 if and only if C and D are homothetic.

17 doi:10.6342/NTU202001018



Theorem 2.4.4. Let C, D € C. Then the function
FON) = V((1 = A\)C + AD)i is strictly concave for 0 < A <1

if C' and D are not homothetic. And f is linear if C and D are homothetic.

Proof. Suppose that C' and D are not homothetic. Let 0 < \j < Xy < 1,0 < XA < 1.
Then (1 —A;)C' + A1 D and (1 — X\3)C + Ay D are not homothetic (by Proposition 2.1.4).
Therefore, by Corollary 2.4.3,

FUL = MM+ AN = V(1= N1 = A1) + A1 = 2))C + ((1 = M)Ay + Ag)D)a

= V(1= MN((1=X\)C+ D)+ A(1 = X)C + XoD))d
> (1= AV (L= A)C 4+ MD)7 +AV((1 = X)C + XD = (1 — A)F(M) + Af(No).

Suppose that C' and D are homothetic. Then by Corollary 2.4.3, f(\) = (1 = X)f(0) +
Af(1). That is, f is linear.

The following is a multiplicative version of the Brunn-Mindowski inequality.

Theorem 2.4.5. Let C, D € C. Then:

V((1=XC +AD) > V(C)Y V(D) for0 <A <1,
where equality holds for 0 < A < 1 if and only if C is a translation of D.

Proposition 2.4.6. The ordinary Brunn-Minkowski inequality and its multiplicative

version are equivalent in the sense that each easily implies the other.

Proof. We first assume that the ordinary Brunn-Minkowski inequality holds. Then

V((l — /\)C—F/\D)é > V((l . A)C)é +V()\D)%
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So,
V((1=X)C +AD) > V(C)'* V(D).

Now assume that its multiplicative version holds. Define:

C: C17D: D17/\: V;(D)E 1
V(C)a V(D)a V(C)a+V(D)a
Then
1-\NC+AD=—+D

By multiplicative version of Brunn-Minkowski inequality,
V((1—=NC+AD) > V(C)' V(D) =1.

So,
V(C+ D) > (V(C)i+ V(D))

That is, the ordinary Brunn-Minkowski inequality holds. [

Proof. of Theorem 2.4.5. By Proposition 2.4.6, the inequality holds.

To obtain the equality condition, observe the proof of Proposition 2.4.6. We know that
the ordinary Brunn-Minkowski inequality must hold for (1 — A\)C and AD.

So they are homothetic. That implies C' and D are homothetic.

And from the next inequality (the inequality of arithmetic and geometric means), we
know V(C) = V(D). So C is a translation of D.

Conversely, if C'is a translation of D, then the equality trivially holds. O
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2.5 Minkowski’s First and Second Inequalities

Theorem 2.5.1 (Minkowski’s first inequality). Let C, D € C. Then
V(C,D..... D) > V(C)V(D),

where equality holds if and only if C and D are homothetic.

Proof. By Theorem 2.4.4, the function f(\) = V((1 — A\)C' + AD)a,0 < X < 1, is

concave. And f is linear if and only if C' and D are homothetic. By Theorem 2.2.1,

V((1=XC+AD)=> (1= NAV(C,....C,D..., D), (2.16)

=0

with i C"s and (d —4) D’s in V(C,...,C,D...,D).

(2.16) shows that f is differentiable. Since f is concave, we have
1 1 1 1
V(D) =V(C)7 = f(1) = f(0) = f'(1) = SV(D)a[aV(D) +d(=1)V(C, D, ..., D)].

Therefore,

Thus,
V(C,D,...,D) >V (C)V(D)* .

The equality condition was obtained since f(1) — f(0) = f’(1) if and only if f is linear

if and only if C' and D are homothetic. [

Theorem 2.5.2 (Minkowski’s second inequality). Let C, D € C. Then
V(C,D,...,D)*>V(C,C,D,...,D)V(D).

Proof. From the proof in the last theorem, f is concave. And (2.16) shows that f is
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twice differentiable. Thus f”(1) <0.

Now let’s compute it.

d(d

d(d—-1)V(D)+2(-1)d(d—1)V(C, D,..., D)+2 2_ 1)V((J, C,D,...,D) = [f(NY|rx=1

Hence,

So,
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2.6 The Isoperimetric and the Isodiametric Inequal-
ity
Theorem 2.6.1 (isoperimetric inequality). Let C € C(R?). Then

s(C)e
V(C)FT

>

where equality holds if and only if C' is a solid Euclidean ball. (S(-) is the surface area.)

Proof. First we note that

50 — 1im VIO ABY) — V(C)

=dV(B%.C,....C).
vt h\ VIB5C,....0)

by Theorem 2.2.1.

By Minkowski’s first inequality,

V(BYC,...,C) > V(BYV(C),

where equality holds if and only if C' and B¢ is homothetic (and so C'is a solid Euclidean
ball). Note that S(B?) = dV (B?), we thus obtain that

s dv(BY,C,...,0)
V(C)d-1 B V(C)d-1

d d\d d\d
> d'V (BY) = f/(vB(ﬁd)l = VS(f_i)il-

where equality holds if and only if C' is a ball. ]

Theorem 2.6.2 (isodiametric inequality). Let C' € C. Then
L d d
V(C) < (§dmmC) V(BY),

where equality holds if and only if C is a solid Euclidean ball.
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Proof. Suppose that C' is centrally symmetric. Without loss of generality, we may

assume that o is the centre of C. Then C' C (3diamC)B? and thus
1
V(C) < (;diamC)*V (B,

where equality holds if and only if C' = (%diamC ) B

Now, suppose that C' is not centrally symmetric. Then Corollary 2.4.3 shows that

V(O)i = ZV(C)F + V(=) < V(5(C — O)i = sV (C - O)F,
and thus:
1
V(0) < V(O — ).

Since C' — (' is origin-symmetric:
V(C—C) < (%diam(C )V (BY)
by the first case. Next note that
diam(C' — C) = max{||(v —v) — (x — y)|| : w,v,z,y € C'}

< max{||u —v| : u,v € C} + max{||z — y|| : =,y € C'} = 2diamC.

So,
V(C) < %(diamC)dV(Bd) - (%diamC)dV(Bd).
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Chapter 3

The work of Boroczky, Lutwak,

Yang and Zhang

3.1 Some Preparations

A boundary point x € OC' of the convex body C'is said to have u € S?! as one of its
outer unit normals provided z - u = ho(u). A boundary point is said to be singular if
it has more than one unit normal vector. It is well known (see, e.g., [2]) that the set of
singular boundary points of a convex body has (d — 1)-dimensional Hausdorff measure
Ht equal to 0.

Let C be a convex body in R? and v¢ : 9C — S9! the generalized Gauss map. For
arbitrary convex bodies, the generalized Gauss map is properly defined as a map into
subsets of S~ However, H¢ -almost everywhere on dC it can be defined as a map
into S¢1. For each Borel set w C S%°!, the inverse spherical image ugl(w) of w is the
set of all boundary points of C' which have an outer unit normal belonging to the set
w. Associated with each convex body C' in R? is a Borel measure S¢ on S¢! called the

Aleksandrov-Fenchel-Jessen surface area measure of C, defined by

So(w) = H™ (vg' ()
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for each Borel set w C S971; ie., So(w) is the (d — 1)-dimensional Hausdorff measure
of the set of all points on JC' that have a unit normal that lies in w. Let C' be a convex
body in R? that contains the origin in its interior. The cone-volume measure V¢ of C

is a Borel measure on the unit sphere S%~! defined for a Borel w C S¢~! by

1
Vo(w) = —/ x - Vc(x)de_l(x),
d 2761/51( )
and thus
1
dVe = EhcdSC. (3.1)
Since,
1
Ve =g [ heldsetw. (3.2)
ueSd—1

we can turn the cone-volume measure into a probability measure on the unit sphere by
normalizing it by the volume of the body. The cone-volume probability measure Vi of

C' is defined
1

Vo= e

Ve.

Suppose C, D are convex bodies in R that contain the origin in their interiors. For

p > 0, the L,-mixed volume V,(C, D) can be defined as

VeD)= [ GEri. 33)

Suppose that the function ki (u) = k(t,u) : I x Sq—1 — (0,00) is continuous, where

I C R is an interval. For fixed t € I, let

K, = Nyega—1{z € R w-u < k(t,u)}
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be the Wulff shape associated with the function k;. We shall make use of the well-known
fact that

hik, < ki and hg, = k; a.e. w.r.t. Sk,,

for each t € I. If k; happens to be the support function of a convex body then hy, = k¢,
everywhere.

The following lemma (proved in e.g. [5]) will be needed.

Lemma 3.1.1. Suppose k(t,u) : I x STt — (0,00) is continuous, where I C R is an

open interval. Suppose also that the convergence in

Ok(t,u)  lim E(t+ s,u) — k(t,u)

ot s—0 S

is uniform on ST If {K;}ieq is the family of Wulff shapes associated with ky, then

AV (K;) _ / O W) o )
Sd—l

dt ot

Suppose C, D are convex bodies in R%. The inradius r(C, D) and outradius R(C, D)

of C' with respect to D are defined by
7(C,D) =sup{t >0: 2 +tD C C and v € R},

R(C,D) =inf{t >0: 2 +tD > C and v € R%}.

Obviously from the definition, it follows that

r(C,D) = 1/R(D,C).
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If C, D happen to be origin-symmetric convex bodies, then obviously

holt) o nd R(C,D) = max 1<)
uesd-1 D(U) ueSd—1 h,D(U)

(34)

It will be convenient to always translate C' and D so that for 0 <t <r =r(C, D), the
function k; = he — thp is strictly positive. Let C; denote the Wulff shape associated

with the function k; i.e., let C; be the convex body given by
Cy={z € Rz -u < he(u) —thp(u) for all u € ST} (3.5)
Note that Cy = C, and that obviously
%i_r}ré Cy=0Cy=C.

From definition (3.5) and Corollary 2.1.2 we immediately have

Co={rcR*:z+tDcC}. (3.6)
Using (3.6) we can extend the definition of C; for the case where t = r =r(C, D) :

C,={zeR:z+rDcCC}.

It is not hard to show (see e.g. [2]) that C, is a degenerate convex set (i.e. has empty
interior) and that

lim V(C,) = V(C,) = 0. (3.7)

t—r

From Lemma 3.1.1 and (3.3), we obtain the well-known fact that for 0 < t < r =
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r(C, D),

d Ok (t, d
V(G = / gt%s@(u): / (~hp)7—dVo,(u) = —dVi(C), D).
gd—1 Sgd—1 Ch

Integrating both sides, and using (3.7), gives

Lemma 3.1.2. Suppose C' and D are convex bodies, and for 0 <t < r =r(C, D), the
body Cy is the Wulff shape associated with the positive function ky = he — thp. Then,

for0<t<r=r(C,D),
ve)-viey=d | Vi(Cu. D)ds,
0

where C,. = {x € R : x +rD C C}.

3.2 The log-Brunn-Minkowski Inequality

Assume C, D € C,0 € int CN int D, A € [0,1]. Then the geometric Minkowski combi-

nation, (1 —X)-C +, A+ D, is defined by
(1—=X)-CHoX-D=Nyega-1{x €R": z-u < he(u) " hp(u)*}.

For p > 0, the Minkowski-Firey L,-combination (or simply L,-combination), (1 — \) -
C 4+, X - D, is defined by

(1=XN)-CHpA-D=nNyegir{z €R 1 z-u < (1 = Nhe(u)? 4+ Mhp(u)?) P},

We list the main problems as follows.

The log-Brunn-Minkowski inequality:

Problem 3.2.1. Show that if C and D are origin-symmetric convex bodies in R%, then
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for all X € [0, 1],
V((1=X)-C+,A-D)>V(C) V(D) (3.8)

The L,-Brunn-Minkowski inequality:
Problem 3.2.2. Suppose p > 0. Show that if C' and D are origin-symmetric convex
bodies in RY, then for all X € [0, 1],

V((1=X)-C+,A-D)>V(C)' V(D) (3.9)

The log-Minkowski inequality:
Problem 3.2.3. Show that if C and D are origin-symmetric convex bodies in RY, then

1 V(D)

hp
log —dVe > =1 .
/Sdl ©8 he ¢ = d ©8 V(C)

(3.10)

The L,-Minkowski inequality:

Problem 3.2.4. Suppose p > 0. Show that if C and D are origin-symmetric convex

bodies in R?, then

([, GRravey = (o (311

For the rest of this section, we suppose that each convex bodies contain the origin
in its interior.

From the definition we can see that
(1=XN)-C+1A-D=(1-XNC+\D.
Actually, for fixed C, D, A, the L,-combination (1 — X) - C +, A - D is increasing with

respect to set inclusion, as p increases.
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That is, if 0 < p < ¢, then
(1-X)-C+,A-DCc(1—-X)-C+,X-D.
To see this, it suffices to show that
(1 = Nhe(w)? + Mhp(w)?)Y? < (1 = Nhe(u)? + Mhp(w))Y Yu € ST
Suppose 0 < p < q. Since f(x) = 2%/? is convex, by Jensen’s inequality,
((1 = AVRE, ++ ARD)P < (1 — N)RPO/P) 4 \p2AYP) — (1 — AR + AhY,.

So we have proved it.

Next, we claim that

(1—A)-C+oA-D= lim ((1—A)-C+,A- D).

p—0+

Since the monotonicity of (1 — \A) - C' 4+, A - D, it suffices to show that

hc(u)l—/\}w(u)A = lim ((1 — )\)h% + )\h%)up_

p—0t

To see this, we apply L’Hospital’s rule as follows:

1 . (1 =X ) loghe + AW, log hp
lim =log((1 — \)R2, + \hE) = 1 ¢ D
S, loslll = Ve Ahp) = lim, (1= NRE + AR

= (1 — A)loghc + Aoghp = loghl *hy,.
So,

h b = exp(log(ht i) = Tim (1= )bl + ARp)'.

p—0+
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So far, we have proved that if 0 <p <1 <g,
(I1=XN)-CH+,A-DC(1=XN)-C+,X-DC(1-XNC+ADC(1—-=X)-C+,;A-D

This fact tell us that:

"The log-Brunn-Minkowski inequality’="The L,-Brunn-Minkowski inequality”=-"The
classical Brunn-Minkowski inequality”=-"The L,-Brunn-Minkowski inequality”, where
0<p<1<gq

For the other inequalities, there is similar relationship as follows:

"The log-Minkowski inequality’=-"The L,-Minkowski inequality”’=-"The L, -Minkowski
inequality”, where 0 < p < q.

To see this, like what we have done, by Jensen’s inequality, if 0 < p < g,

([, GRraveyr < [ (GEyymave = [ Gyt

he gi-1 he c

So,
([ GRravo < ([ GRyave

Sd—1 hC

And by L’Hospital’s rule,

hD — . 1 hD
lim 1 Y qU NP = lim —1 / d
Ji s GV = i s [  (GE)ae

L —D )P lo dV hr -
_ i Jem e 8 dVo / log "2 v,
p_>0+ de 1 ( ) dVC Sd—l h/C

And
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if and only if

h _
log( / (=2)PdVe) P > log(
Sd—1 h

Hence the relationship was proved.

3.3 Equivalence of the L, -Brunn-Minkowski and the
L,-Minkowski Inequalities

In this section, we show that for each fixed p > 0 the L,-Brunn-Minkowski inequality
and the L,-Minkowski inequality are equivalent in that one is an easy consequence of
the other. In particular, the log-Brunn-Minkowski inequality are equivalent.

Suppose p > 0. If C' and D are convex bodies that contain the origin in their interior

and s,t > 0 (not both zero) the L,-Minkowski combination s-C +,t- D, is defined by
s-CHpt-D={xcR: 2 u< (she(u)” +thp(u)?)'/? for all u € S4'}.

We see that for a convex body C and real s > 0 the relationship between the L,-scalar

multiplication, s - C, and Minkowski scalar multiplication sC' is given by:
1
s-C=srC.

Suppose p > 0 is fixed and suppose the following "weak” L,-Brunn-Minkowski inequal-
ity holds for all origin-symmetric convex bodies C' and D in R? such that V(C) =1 =
V(D) :

V((L=X)-C+,X-D)>1, (3.12)

for all A € (0,1). We claim that from this it follows that the following seemingly

"stronger” L,-Brunn-Minkowski inequality holds: if C' and D are origin-symmetric
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convex bodies in R?, then
V(s-C+,t-D)i>sV(C)d4+tV(D)d, (3.13)

for all s,t > 0. To see this assume that the "weak” L,-Brunn-Minkowski inequality
(3.12) holds and that C' and D are arbitrary origin-symmetric convex bodies. Define
tha volume-normalized bodies C' = V(C)~aC and D = V(D)= aD. Then (3.12) gives

V((1=X)-C+,A-D) > L (3.14)
Let A = V(D)a(V(C)a 4+ V(D)4)~'. Then

(1=XN)-CH+,A-D=

Therefore, from (3.14), we get

V(C +,D)i >V (C)

ars
+
=
S
ars

als
£
)

If we now replace C' with s- C' and D with ¢ - D and note that V(s-C)d = sV (C)

obtain the desired "stronger” L,-Brunn-Minkowski inequality (3.13).

Lemma 3.3.1. Suppose p > 0. When restricted to origin-symmetric convexr bodies in
RY, the L,-Brunn-Minkowski inequality (3.9) and the L,-Minkowski inequality (3.11)

are equivalent.

Proof. Suppose C and D are fixed origin-symmetric convex bodies in R?. For 0 < X < 1,
let

Qr=(1=X)-CHyA-D;

i.e., Q) is the Wulff shape associated with the function gy = ((1— A)hZ + /\h%)%. It will
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be convenient to consider g, as being defined for A in the open interval (—€y, 1 + €q),
where ¢y > 0 is chosen so that for A € (—e€p, 1 + €), the function g, is strictly positive.
We first assume that the L,-Minkowski inequality (3.11) holds. From (3.2), the fact
that hg, = ((1 = A)hg + )\h%)% a.e. with respect to the surface area measure Sg,, (3.1)

and (3.3), and finally the L,-Minkowski inequality (3.11), we have

1
V@) =y [ hodSe,

1 _
-2 /S (U= X+ Ny s S,

— (1- )V(Q) / (1 paty, + AV(Qy) / (12 yeat,

Sd—1 th gd—1 hQ)\

s

> V(Q)'H(1 = WV(O)f + AV (D)), (3.15)

This and the inequality of arithmetic and geometric means gives

p
d

V(Qy) > (1= MV(C)T + AV(D)D)s > V(C)' V(D) (3.16)

which is the L,-Brunn-Minkowski inequality (3.9).

Now assume that the L,-Brunn-Minkowski inequality (3.9) holds. As was seen at
the beginning of this section, this inequality implies the seemingly stronger L,-Brunn-
Minkowski inequality (3.13). But this inequality tell us that the function f : [0,1] —

(0,00), given by f(\) =V (Qx)7 for A € [0, 1], satisfies that

FO) = (1= A)F(0) + AF(1). (3.17)

Now, the convergence as A — 0 in

— he” he PhY, — h
5} QO_> C (h%—h%): c p C’

A [ P
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is uniform on S?°!. By Lemma 3.1.1, (3.3) and (3.1), and (3.2),

av(Qy), he PR, —he ., d
o= [ ReeRase = S c.0) - V(o)

Therefore, (3.17) yields

> 1 — _ — q— d
> i A0 £(1) ~ £(0) = V(D)! ~ V(O)
Then
‘/P(Ca D) > (V(D>)§
vie)y — ey
which gives the L,-Minkowski inequality (3.11). O]

Lemma 3.3.2. For origin-symmetric convex bodies in RY, the log-Brunn-Minkowski

inequality (3.8) and the log-Minkowski inequality (3.10) are equivalent.

Proof. Suppose C and D are fixed origin-symmetric convex bodies in R%. For 0 < A < 1,
let

=(1—=X)-C+,A-D;

i.e., @, is the Wulff shape associated with the function ¢, = hlc_Ah),‘j. It will be con-
venient to consider ¢, as being defined for A in the open interval (—ep, 1 + €), where
€ > 0.

We first assume that the log-Minkowski inequality (3.10) holds. From the fact that
hq, = h& *h)) a.e. with respect to the surface area measure Sp, , and the log-Minkowski

inequality (3.10), we have

1 hl*)\h)x
0= / hg, log Ch DdSo,
Sd-1 QA
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1 hc hp
=(1—\ / h 10 +)\ / h 10 das, s
= NG Jor " %870, <@A> o 10x o8 50

> (1 /\)él V(((;)) + >\—1 ;/((Ci)) (3.18)
1 VOV
d V(Qx)

This gives the log-Brunn-Minkowski inequality (3.8).
Now assume that the log-Brunn-Minkowski inequality (3.8) holds. It tell us that the

function f:[0,1] — (0,00), given by f(\) =logV(Q,) for A € [0, 1], satisfies that

F) = (1= f0) + Af (D). (3.19)

Now, the convergence as A — 0 in

arx — 4o

h
— hclogh—D,
c

is uniform on S?!'. By Lemma 3.1.1,

dV (Qx) hp hp
o= holog2Pase=d [ logPave.
D =0 /S clog 7 “dbSe /Sd_1 0g 7, ~dVe

Therefore, (3.19) yields

hp o 1 dV(@QN), oy _ g J(A) = F(0)
d/sd o8 hcdv T V(Qo)  dA o = f1(0) = lim, )
> tim WOZIO)_ j0) — p(0) = 10gv(D) - 1og v (0),
which gives the log-Minkowski inequality (3.10). O
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3.4 Blaschke’s Extension of the Bonnesen Inequal-
ity
In [6], E. Lutwak proved that V(C, D) = Vi(C, D). That is,

1

V(C,D) = - /S  hp(w)dSe(w) (3.20)

From (3.20) we see that for convex bodies C, D, D', we have

DcD =V(C,D)<V(CD, (3.21)
3.21

with equality if and only if hp = hp a.e. w.r.t. Se.

Theorem 3.4.1. If C, D are plane convez bodies, then for r(C, D) <t < R(C, D),
V(C) —2tV(C,D) +t*V (D) < 0.

The inequality is strict whenever r(C,D) <t < R(C,D). When t = r(C, D) equality
will occur if and only if C' is the Minkowski sum of a dilation of D and a line segment.
When t = R(C, D) equality will occur if and only if D 1is the Minkowski sum of a

dilation of C' and a line segment.

Proof. Let r = r(C, D), and suppose t € [0,7]. Recall from (3.5) that
Cy={z eR?: 2 -u < he(u) —thp(u) for all u € S*'},

and that from (3.6), we have

C,+tD cC. (3.22)

But (3.22), together with the monotonicity (3.21), Proposition 2.2.2 (linearity), together
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with Proposition 2.2.3 gives
V(C,D)>V(Cy+tD,D)=V(C,, D)+ tV(D). (3.23)
Now Lemma 3.1.2 and (3.23) gives,
¢
V(C) = V(C) = 2/ V(Cy, D)ds
0
t
< 2/ (V(C,D)—sV(D))ds (3.24)
0

= 2tV(C, D) — >V (D).

Thus,
V(C) -2tV (C, D) +t*V(D) < V(C,). (3.25)

From (3.23) and (3.24), we see that equality (3.25) holds if and only if,
V(C,D) = V(C,s +sD,D) ¥s € [0,1], (3.26)
which, from (3.22) and (3.21), gives
he = he, + shp a.e. wr.t Sp Vs € [0,].

By (3.7) we know V(C,) = 0 and thus C, is a line segment, possibly a single point.

Therefore from (3.25) we have
V(C) —2rV(C,D) +r*V(D) < 0. (3.27)
Suppose now the equality holds in (3.27), that is,

V(C) —2rV(C,D) +r*V (D) = 0. (3.28)
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Then, by (3.26) we have,
V(C,D) = V(C, +rD,D).

But this in (3.28) gives:

V(C) —2rV(C, +1rD, D)+ r*V(D) = 0,

which, using linearity , can be rewritten as

V(C) - 2rV(C,, D) — r*V(D) = 0,

and since V(C,.) = 0, using linearity, as

V(C) = V(C, +rD).

This and that C, +rD C C forces that C, +rD = C. That is, C is the Minkowski
sum of a dilation of D and the line segment C,.. Conversely, suppose that C' is the
Minkowski sum of a dilation of D and a line segment L. That is, C = sD + L. Then
r(C,D) =s,C, = L. So, C = C, +rD. Therefore,

V(C) = 2rV(C, D) + V(D) = V(C, + D) — 2rV(C, + rD, D) + r*V (D)

= (V(C,) +2rV(C,, D) +r*V (D)) — (2rV(C,, D) + 2r*V (D)) + r*V(D) = V(C,) = 0.

Hence, V(C) — 2rV(C, D) + r*V(D) = 0 if and only if C is the Minkowski sum of a
dilation of D and a line segment.

Let ' =r(D,C) = 1/R(C, D), the inequality (3.27) tell us that

V(D) —2r'V(D,C) +r?V(C) <0,
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with equality if and only if D is the Minkowski sum of a dilation of C' and a line segment.
That is

V(C) — 2RV(C, D) + RV(D) < 0, where R = R(C, D).

Finally, let p(t) = V(C) — 2tV (C, D) + t*V (D). since p is a monic quadratic function ,

it is a strictly convex function. So,

p((1=XNr+AR) < (1=Mp(r)+ Ap(R) <0 V0 <\ < 1.

Thus,

V(C) —2tV(C,D) +t*V(D) < 0 for r(C,D) <t < R(C, D).

O]
3.5 Uniqueness of Planar Cone-Volume Measure
Lemma 3.5.1. If C, D are origin-symmetric plane convex bodies, then
hc hD
V(D) —dVe < V(O) —dVe, (3.29)
S1 hD S1 hC

with equality if and only if C' and D are dilates, or C' and D are parallelograms with

parallel sides.

Proof. Since C' and D are origin symmetric, from (3.4) we have

he(u)

r(C,D) < ()

< R(C, D).

>

for all u € S'. Thus, from Theorem 3.4.1, we get
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Integrating both sides of this, with respect to the measure hpdSe, and using (3.20) and

(3.2), gives
~he(w) ho(u) ., " ¥
0> [ (V€)= 25V (C.D) + GE VD) u)dSclu)
= —2V(C)V(C, D) + V(D) /S 1 ’;; ((13; dSc(u)
So,
V(D) /S 1 Z—ZdVC = V(D) /S 1 ZZ(& dSe(u) < V(C)V(C, D) = V(C) /S 1 Z_’;dvc.

This yields the desired inequality (3.29). Suppose there is equality in (3.29). Thus,

he(u)
hD(U,)

he(u)
hD (U)

V(C) -2 V(C, D)+ ( )2V(D) = 0, for all u € suppSc. (3.30)

where suppSc = {v(z) : x € 9C, z is not singular} = {u € S : S¢(B,(u)NST1) >0
for all r > 0}.
If C" and D are dilates, we’re done. So assume that C' and D are not dilates. But then

r(C, D) < R(C, D). From Theorem 3.4.1, we know that when

hc(u)
hD(u)

r(C, D) < < R(C, D),

it follows that
hc (u) hc (u)

v(e) -2 00

and thus we conclude that

he(uw)/hp(u) € {r(C, D), R(C, D)} for all u € suppSc. (3.31)

Note that since C' is origin symmetric suppSe¢ is origin symmetric as well. Either there
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exists up € suppSe¢ so that ho(ug)/hp(ug) = r(C, D) or he(ug)/hp(ug) = R(C, D).
Suppose that he(ug)/hp(ug) = r(C, D). Then from (3.30) and the equality conditions
of Theorem 3.4.1 we know that C' must be a dilation of the Minkowski sum of D and

a line segment. But C' and D are not dilates, so there exists an zy # 0 so that

ho(u) = |xg - u| +r(C, D)hp(u),

for all unit vectors u. This together with he(ug)/hp(ug) = r(C, D) shows that xq is
orthogonal to ug and that the only unit vectors at which he/hp = r(C, D) are uy and
—ug. But suppSc must contain at least one unit vector u; € suppSe other than =4uy.
From (3.31), and the fact that the only unit vectors at which he/hp = r(C, D) are
up and —ug, we conclude heo(ui)/hp(uy) = R(C, D) and by the same argument we
conclude that the only unit vectors at which he/hp = R(C, D) are u; and —u;. Now

(3.31) allow us to conclude that

suppSc = {£uo, £us }.

This implies that C' is a parallelogram. Since C' is the Minkowski sum of a dilate of D
and a line segment, D must be a parallelogram with sides parallel to those of C'. If we
had assumed that he(ug)/hp(ug) = R(C, D), rather than r(C, D), the same argument
would lead to the same conclusion.

It is easily seen that the equality holds in (3.29) if C' and D are dilates. Now suppose

that C' and D are parallelograms with parallel sides. Then

ho(u) = ar|vy - ul + as|vg - u|, hp(u) = by|vy - u| + be|ve - ul,
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where vy, vy € ST and ay, as, by, by > 0. Then suppSe = {+vi, +vy }, while

Ve({vr}) = Ve({—vi ) = Vel{vy }) = Ve({~vy }) = 1/4,

and |vg - vy | = |vg - V.
Therefore,
1 a 1
—dVC blb2|?}1 U2| ( ! b ) §(a1b2+a2b1).
S1 2
and
1, by by 1
51 —dVC CL16L2|U1 Uy |§(a—1 a—2) = 5(@11)2 + CLle).
Hence,
hC hD
V(D) —dVe =V /(C) —dVe.
S1 hD S1 hC
That is, the equality holds in (3.29). O

Theorem 3.5.2. If C, D are origin-symmetric plane convex bodies that have the same
cone-volume measure, then C = D or else C' and D are parallelograms with parallel

sides.

Proof. Assume that Vo = Vp and C # D, then
V(C) —/ dVe —/ dVp = V(D).
St S
So C and D are not dilates (otherwise C'= D). Thus inequality (3.29) becomes

h
—dVC —DdVC.
Sl C
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And by exchanging the roles of C' and D,

hp he
—dVp < —dVp.
/S'l hC b= S1 hD b

Both inequality have equality condition: C' and D are parallelograms with parallel sides.

Observe that

he / hp / hp / he / he
—dVe < —dVe = —dVp < —dVp = —dVe.
/51 hD ¢ = g1 hc © g1 hc b= g1 hD b g1 hD ©

So the equalities hold. That is, C' and D are parallelograms with parallel sides. O

3.6 Minimizing the Logarithmic Mixed Volume

Lemma 3.6.1. Suppose C is a plane origin-symmetric convex body, with V(C) = 1,
that is not a parallelogram. Suppose also that Py is an unbounded sequence of origin-
symmetric parallelograms all of which have orthogonal diagonals, and such that V (Py) >

2. Then, the sequence

/ loghpk(u)ch(u)
S’l
s not bounded from above.

Proof. Let uy,us ) be orthogonal unit vectors along the diagonals of . Denote the
vertices of Py by £hy juq i, £ho pus . Without loss of generality, assume that 0 < hy , <
ha . The condition V' (FP;) > 2 is equivalent to hy xhey > 1. The support function of Py
is given by

hp, (u) = max{hy g|u - wy k|, hoglu - uskl}, (3.32)

for u € S*. Since S! is compact, the sequences u; and ugy have convergent subse-

quences. Again, without loss of generality, we may assume that the sequences u, ; and
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us , are themselves convergent with

lim w;, = u; and lim wug = ua,
k—o0 k—o00

where u; and uy are orthogonal (since uy - ug = limy_yo0 Uy f - U2, = 0).
It is easy to see that if the cone-volume measure, Vo ({zuy}), of the two-point set {+u;}
is positive, then C' contains a parallelogram whose area is 2V ({£u,}). Since C itself

is not a parallelogram and V' (C') = 1, it must be the case that

Vo({2uw}) < % (3.33)
For 4 € (0, %), consider the neighborhood, Us, of {#u;}, on S*,
Us={ueS" :|Ju-u|>1-5}
Since Ve (S*) = V(C) = 1, we see that for all 6 € (0, 5),
Ve(Us) + Ve(Us) = 1, (3.34)

where Uy is the complement of Us.

Since the Us; are decreasing (with respect to set inclusion) in 6 and have a limit of

{iul}a
Jim Ve (Us) = Ve({tui}).

This together with (3.33), shows the existence of a dy € (0, 5) such that

V0<U50) <

N —
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But this implies that there is a small 5 € (0, 1) so that

1
10 = Vo (Us,) — 5 te< 0. (3-35)

This together with (3.34) gives

1 1
Vo(Us,) = 5~ < + 70 and Vi (Uy,) = 3 + €9 — To. (3.36)

Since u;j converge to u;, we have, |u; — w;| < dy whenever k is sufficiently large (for

both i = 1 and i = 2). Then for u € Uy, and k sufficiently large, we have
lw -] > Ju-w| = fu- (ue —w)] 2 fu-w| = g —wr| = 1= do — do > do,

where the last inequality follows from the fact that 6y < % For all u € S', we know
that |u - ui|® + |u - ug|* = 1. Thus, for u € Us, we have |u - us| > (1 — (1 — 5)%)2 =

80(2 = 8))2 > (502)2 > 24y, which shows that when k is sufficiently large,
0
|- ug | > |u-ug| — |u- (ugp —ug)| > |u - us| — |ug g — us| > 209 — do = do.

From the last paragraph and (3.32) is follows that when k is sufficiently large,

Sohis ifu € Us,,
hp () >4 " S (3.37)
50h27k if ue U(gco.

By (3.37) and (3.34), (3.36), the fact that 0 < hyj < hoy together with (3.35), and
finally the fact that hyghoy > 1 together with ¢ € (0, %), we see that for sufficiently

large k,

/ IOg hpdeC = / log hpdeC + / log hpk dVC
St Us, Ugo

> log 50 + VC(U&)) log th + VC(U(?O) log h27k
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1 1
= log do + (5 + 70 — €) log hy i, + (5 — 7o+ €) log ha

1
= 10g (So + 260 log thg + (5 — 60) log(thhQ,k) + To(log th — 10g h27k)
> log 0o + 2¢eplog ho .

Since P, is not bounded, the sequence hyy is not bounded from above. Thus, the

sequence

/ log hp dVe
Sl
is not bounded from above. OJ

Lemma 3.6.2. Suppose C' is a plane origin-symmetric convex body that is not a paral-
lelogram, then there exists a plane origin-symmetric convezx body Cy so that V(Cy) = 1

and

/ 10g thVC Z / log hCodVC
St St
for every plane origin-symmetric convex body Q with V(Q) = 1.

Proof. By letting C = V(C)~2C, we may assume that V(C) = 1. Consider the mini-
mization problem,

inf IOg thVC,
g1

where the infimum is taken over all plane origin-symmetric convex bodies ) with
V(@) = 1. Suppose that Q) is a minimizing sequence; i.e., Q) is a sequence of origin-
symmetric convex bodies with V(Q) = 1 and such that [ ¢110g hg, dVe tends to the
infimum (which may be —o0). We shall show that the sequence @ is bounded and the
infimum is finite.

By The John Ellipsoid Theorem (see e.g. [4]), there exist ellipses Ej centered at the
origin so that

E, C Qp C V2E,. (3.38)
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Let uy , u2k, be the principal directions of Ej so that
hl,k S h27k, where th = hEk (uLk) and h27k = hEk (ulk).

Let Py be the origin-centered parallelogram that has vertices {£hy gu1 k, £hopuoy}.
(Observe that by the Principal Axis Theorem the diagonals of Py are perpendicular.)
Since Ey C V2P, it follows from (3.38) that

So,
P, C Qi C 2P, (3.39)

From this and V(Qy) = 1, we see that V(P;) > 1.

Assume that Q) is not bounded. Then P is not bounded (since P, D Qk/2). Applying
Lemma 3.6.1 to V8P, shows that the sequence JsiloghpdVe = [glogh gp dVe —
log v/8 is not bounded from above. Therefore, from (3.39) we see that the sequence
/. ¢110g hg, dVe cannot be bounded from above. However, this is impossible because Qy
was chosen to be a minimizing sequence.

We conclude that @) is bounded. By Blaschke’s Selection Theorem (Theorem 2.3.1),
Qi has a convergent subsequence that converges to an origin-symmetric convex body

Coy, with V(Cy) = 1 (by Theorem 2.3.2). (intCy # ¢ since V(Cy) = 1.) It follows that

J1 log heydVe is the desired infimum. O

3.7 The log-Minkowski Inequality

In [3], they proved Problem 3.10, Problem 3.8, Problem 3.11 and Problem 3.9 for C, D

are in the plane, with their equality conditions. First, the log-Minkowski inequality:
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Theorem 3.7.1. If C and D are plane origin-symmetric convex bodies, then

1 V(D)

hp -
log —dVe > =1
/Sl Oghc C_2Ogv(0)>

(3.40)

with equality if and only if either C and D are dilates or when C' and D are parallelograms

with parallel sides.

Proof. Without loss of generality, we can assume that V(C) = V(D) = 1. We shall

establish the theorem by proving

/ log hpdV¢ 2/ log hedVe,
st St

with equality if and only if either C' and D are dilates or when C' and D are parallelo-
grams with parallel sides.

First, assume that C' is not a parallelogram. Consider the minimization problem

min/ logthVC,
g1

taken over all plane origin-symmetric convex bodies @) with V(@) = 1. Let Cy denote a
solution, whose existence is guaranteed by Lemma 3.6.2. (Our aim is to prove that Cy =
C and thereby demonstrate that C' itself can be the only solution to this minimization
problem.)

Suppose f is an arbitrary but fixed even continuous function on S'. Consider the

deformation of hg,, defined on R x S' by

qe(u) = q(t, u) = ho,(u)e™.

Let @; be the Wulff shape associated with ¢;. Observe that (), is an origin symmetric

convex body and that since qq is the support function of the convex body Cj, we have

49 doi:10.6342/NTU202001018



Qo = Co.
Since Cj is an assumed solution of the minimization problem, the function g; defined

on R by

g1<t> = V(Qt)fé eXp{/1 10g thdVC} = eXp{/1 10g th/V(Qt)*1/2dVC}7
S S

attains a minimal value at t = 0 (since V(Q;/V(Q;)~Y/%) = 1). Since hg, < ¢, this

function is dominated by the differentiable function g, defined on R by

g2(t) = V(Qt)_% eXp{/51 log ¢;dV}.

Since ¢y = h¢, = hq,,
92(0) = g1(0) < g1(t) < go(t) VE € R.

Thus, ¢5(0) = 0. Note that V(Qo) = V(Cy) = 1. By Lemma 3.1.1,

0= g,(0) = —% /S ey () (u)Si, () v /5 o5 g0V}

hCo (U) f(u)

< hco (u) ch(u)

+exp{/ log qodVe}
Sl

So,
flw)dVey(u) = | f(u)dVe(u).
Sl Sl

Since f was an arbitrary even continuous function,
Ve, = Ve

By Theorem 3.5.2, and the assumption that C' is not a parallelogram, we conclude that

Co=C.
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Thus, for each D such that V(D) = 1,

/loghpdvcz/ log hedVe,
st St

with equality if and only if C'= D. This is the desired result when C' is not a parallel-
ogram.

Now assume that C' is a parallelogram whose support function is given by
ho(u) = aj|vy - u| + az|vs - ul,

where v, vy € S* and ay, as > 0. Then suppSe = {Fvi, vy }, while |v; - vy | = |vg - vi|
and Vo({&vi}) = 2a1as|v; - v |. So that 4ajas|vy - vy | = V(C) = 1. And we can see

that

1
eXp/ log hpdVe = exp(E(log hp(vi) +loghp(vy))) = \/hD(vf)hD(sz). (3.41)
Sl

The parallelogram circumscribed about D with sides parallel to those of C' has volume

hp(v7)

|Ul'02l|

4 hp(vy) = 16ayashp (vi)hp (vy),

and thus, 16a,ashp(vi)hp(vy) > V(D) = 1, or equivalently

1
1L €L
>

with equality if and only if D itself is a parallelogram with sides parallel to those of C.
Thus, by (3.41),

1
/51 log hpdVe = log \/hD(Ull)hD(%L) > log \/;m'
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the quality holds if and only if

1
hp(vi)hp(vy) = :
i.e.; if and only if D is a parallelogram with sides parallel to those of C. ]

The log-Brunn-Minkowski inequality:

Theorem 3.7.2. If C and D are origin-symmetric convex bodies in the plane, then for
all X € [0, 1],
V((1—=X)-C+,X-D)>V(C) V(D) (3.42)

When A € (0,1), equality in the inequality holds if and only if C' and D are dilates or

C and D are parallelograms with parallel sides.

Proof. Lemma 3.3.2 shows that the log-Minkowski inequality of Theorem 3.7.1 yields
the log-Brunn-Minkowski inequality (3.42) of Theorem 3.7.2. To obtain the equality
conditions of (3.42), look the proof of Lemma 3.3.2. Suppose the equality in (3.42)
holds. The equality in (3.18) must hold. By the equality conditions in Theorem 3.7.1,
we know that either C' and @), are dilates or when C' and @), are parallelograms with
parallel sides. And either D and @, are dilates or when D and @), are parallelograms
with parallel sides. All the four possible cases satisfies the equality condition in Theorem
3.7.2. i.e., C'and D are dilates or C' and D are parallelograms with parallel sides.
Now suppose that C' and D are dilates or C' and D are parallelograms with parallel
sides. If C' and D are dilates, then C', D and @, are dilates. So the equality in (3.18)
holds. Therefore the equality in (3.42) holds.

If C" and D are parallelograms with parallel sides such that

he(u) = ay|vy - u| + az|ve - ul, hp(u) = by|vy - u| + bo|vg - ul.
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where vy, vy € ST and ay, as, by, by > 0. Let A = |v; - vy | = |vg - v1|. Then

ho(vf) = arA, hc(vzl) = a1 A and hD(vf) = byA, hD(’Ué') = b A.

So,

Qx C{z:|z-vf| <al A, |z -v)| < al b} A}
Then

1-A A 5 A al = b
V(C) V(D) <V(Qy) < 422 bT A
asA by A
= (4=rmA) A= h A = V() TV (D)

Therefore,

V(Qy) =V(O)' V(D)™

The L,-Minkowski inequality:

Theorem 3.7.3. Suppose p > 0. If C and D are origin-symmetric convex bodies in the

plane, then,

hD p 1 1
dVe)r > 3.43
([ GRrave) = (gt (3.43)
with equality if and only if C' and D are dilates.

Proof. By (3.40) and Jensen’s inequality,

([ GRrave)t = expzoa( | (G2PdV)} = el [ Tos(2yave)

hC S1

VD), V(D)
Vo) = o)

h _ 1
— exp [ log(;2)aVe} = exp( log
St C

Suppose the equality in (3.43) holds. The equality condition of (3.40) shows that either

C and D are dilates or when C and D are parallelograms with parallel sides.
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If C and D are dilates, we are done. If not, then C' and D are parallelograms with
parallel sides.

The equality condition of Jensen’s inequality shows that

hp

(h_)p = constant on suppV.
c

Since C' and D are parallelograms with parallel sides, C' and D are dilates. Conversely,

suppose that C' and D are dilates, says, D = tC for t > 0. Then

"Dyt = ()5 =t = (12) = (L2
([ GRPave): =) = 1= ()} = (G

~—

[

The L,-Brunn-Minkowski inequality:

Theorem 3.7.4. Suppose p > 0. If C' and D are origin-symmetric convex bodies in the

plane, then for all X € [0,1],

V((1—=X)-C+,X-D)>V(C)' V(D) (3.44)

When X € (0,1), equality in the inequality holds if and only if C' = D.

Proof. Lemma 3.3.1 shows that the L,-Minkowski inequality of Theorem 3.7.3 yields
the L,-Brunn-Minkowski inequality of Theorem 3.7.4.

To obtain the equality condition, suppose the equality holds for some A € (0, 1). Look
the proof of Lemma 3.3.1. The inequality in (3.15) and (3.16) must be equality.

From the equality conditions of Theorem 3.7.3, we know that equality in inequality
(3.15) implies that C' and D are dilates. But the inequality of arithmetic and geometric
means in (3.16) has equality condition V(C') = V(D). Thus we conclude that equality
in (3.44) implies that C' = D.
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Suppose C' = D, Then the equality in (3.44) trivially holds (Since (1 —A)-C+,X-C =
). [
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