Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6841
Title: 在N 維空間中的費滋漢那古默系統之行波解
Travelling wave solutions of the diffusive FitzHugh-Nagumo
system in R^N
Authors: Chih-Chiang Huang
黃志強
Advisor: 陳俊全(Chiun-Chuan Chen)
Keyword: 費滋漢那古默系統,行波解,反梯度系統,變分法,上解下解法,
FitzHugh-Nagumo system,travelling waves,skew-gradient structure,variational method,the method of super- and subsolutions,
Publication Year : 2012
Degree: 博士
Abstract: 本篇論文主要研究在N維空間中擴散的費滋漢那古默系統行波解之存在性。這個系統有反梯度結構亦有非局部的梯度結構。此外,藉由適當的變換它在某些參數範圍之下亦有單調系統結構。
對於有界區域,變分法用來建構此系統有邊值條件平衡態的存在性。無界柱狀區域並且當方程的擴散系數相同時,我們藉由上述的三種結構來研究行波解。使用非局部的能量來證明行波解的存在性並用能量觀點刻畫波速;另一方面,使用反梯度結構,我們給出波與波速的最大最小能量公式刻畫方法。關於全空間區域,應用上解下解法來建立在N維空間中單邊穩定形式之行波解。除此之外,藉著反射方法也建立了在1維空間中無窮多個周期駐波。
In this thesis, we study the existences of travelling waves of the diffusive FitzHugh-Nagumo system (DFHN) in R^N. This system has a skew-gradient structure as defined by Yanagida as well as a non-local gradient structure. In addition, by a suitable transformation, it also has a monotone-system structure on some parameter ranges. For bounded domains, the variational approach is applied to construct steady states of (DFHN) with Dirichlet or/and Neumann condition. For unbounded cylindrical domains, we study the travelling wave solutions via all of the three structures mentioned above when the diffusion coefficients in the equations are equal. By using the nonlocal variational energy, we establish the existence of a travelling front solution for (DFHN). Our existence result also obtains a variational characterization for the wave speed. On the other hand, using the skew-gradient structure, we give a mini-max formulation of the travelling wave and its speed. For whole domains, we employ the method of super- and subsolutions to establish the existence of monostable-type traveling wave solutions in R^N. Moreover, we construct infinitely many standing periodic solutions in R^1 based on the reflection method.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6841
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-101-1.pdf640.37 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved