Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6841
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊全(Chiun-Chuan Chen)
dc.contributor.authorChih-Chiang Huangen
dc.contributor.author黃志強zh_TW
dc.date.accessioned2021-05-17T09:19:16Z-
dc.date.available2014-07-19
dc.date.available2021-05-17T09:19:16Z-
dc.date.copyright2012-07-19
dc.date.issued2012
dc.date.submitted2012-07-02
dc.identifier.citation[1] Benci, V. and Rabinowitz, P. H., Critical point theorems for indefinite functionals,
Invent. Math. 52 (1979), no. 3, 241-273.
[2] Carpenter, G. A., A geometric approach to singular perturbation problems with applications to nerve impulse equations, J. Differential Equations 23 (1977), no. 3,
335-367.
[3] Chueh, K. N., Conley, C. C. and Smoller, J. A., Positively invariant regions
for systems of nonlinear diffusion equations, Indiana Univ. Math. J. 26 (1977), no.
2, 373-392.
[4] Casten, R. G., Cohen, H. and Lagerstrom, P. A., Perturbation analysis of
an approximation to the Hodgkin-Huxley theory, Quart. Appl. Math. 32 (1974/75),
365-402.
[5] Chen, C.-N. and Hu, X., Stability criteria for reaction-diffusion systems with
skew-gradient structure, Comm. Partial Differential Equations 33 (2008), no. 2, 189-
208.
[6] Dockery, J. D., Existence of standing pulse solutions for an excitable activator- inhibitory system, J. Dynam. Differential Equations 4 (1992), no. 2, 231-257.
[7] Ermentrout, G. B., Hastings, S. P. and Troy, W. C., Large amplitude stationary waves in an excitable lateral-inhibitory medium, SIAM J. Appl. Math. 44
(1984), no. 6, 1133-1149.
[8] FitzHugh, R., Impulse and physiological states in models of nerve membrane, Biophysics
J. 1, 445-466 (1961).
[9] Gardner, R., Existence of multidimensional travelling wave solutions of an initial boundary value problem, J. Differential Equations 61 (1986), no. 3, 335-379.
[10] Gilbarg, D. and Trudinger, N. S., Elliptic partial differential equations of second order., Springer-Verlag, Berlin, 1983.
[11] Heinze, S., A Variational Approach to Traveling Waves, Preprint 85, Max Planck Institute for Mathematical Sciences, 2001.
[12] Hodgkin, A. L. and Huxley, A. F., A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117
(1952), 500-544.
[13] Hagberg, A. and Meron, E., From labyrinthine patterns to spiral turbulence.,
Phys. Rev. Lett. 72 (1994), 2494-2497.
[14] Hamel, F., Monneau, R. and Roquejoffre, J.-M., Existence and qualitative properties of multidimensional conical bistable fronts, Disc. Cont. Dyn. Systems 13
(2005), 1069-1096.
[15] Hamel, F. and Roquejoffre, J.-M., Heteroclinic connections for multidimensional
bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst. Ser. S 4(2011), no. 1, 101-123.
[16] Ikeda, H., Singular pulse wave bifurcations from front and back waves in bistable reaction-diffusion systems, Methods Appl. Anal. 3 (1996), no. 3, 285-317.
[17] Ikeda, H., Mimura, M. and Nishiura, Y., Global bifurcation phenomena of travelling wave solutions for some bistable reaction-diffusion systems, Nonlinear Anal. 13 (1989), no. 5, 507-526.
[18] Keener, J. P., Waves in excitable media, SIAM J. Appl. Math. 39 (1980), no. 3, 528-548.
[19] Klaasen, G. A., Stationary spacial patterns for a reaction-diffusion system with an excitable steady state, Rocky Mountain J. Math. 16 (1986), no. 1, 119-127.
[20] Klaasen, G. A. and Mitidieri, E., Standing wave solutions for a system derived from the FitzHugh-Nagumo equations for nerve conduction, SIAM J. Math. Anal. 17
(1986), no. 1, 74-83.
[21] Kokubu, H., Nishiura, Y. and Oka, H., Heteroclinic and homoclinic bifurcations in bistable reaction diffusion systems, J. Differential Equations 86 (1990), no. 2, 260-341.
[22] Klaasen, G. A. and Troy, W. C., Stationary wave solutions of a system of reaction-diffusion equations derived from the FitzHugh-Nagumo equations, SIAM J. Appl. Math. 44 (1984), no. 1, 96-110.
[23] Kurokawa, Y. and Taniguchi, M., Multi-dimensional pyramidal travelling fronts in the Allen-Cahn equations, Proc. Roy. Soc. Edinburgh Sect. A 141 (2011), no. 5, 1031-1054.
[24] Lucia, M., Muratov, C. B. and Novaga, M., Linear vs. nonlinear selection for the propagation speed of the solutions of scalar reaction-diffusion equations invading an unstable equilibrium, Comm. Pure Appl. Math. 57 (2004), no. 5, 616-636.
[25] Lucia, M., Muratov, C. B. and Novaga, M., Existence of traveling waves of invasion for Ginzburg-Landau-type problems in infinite cylinders, Arch. Ration. Mech. Anal. 188 (2008), no. 3, 475-508.
[26] Matsuzawa, H., Asymptotic profiles of variational solutions for a FitzHugh- Nagumo-type elliptic system, Differential Integral Equations 16 (2003), no. 8, 897- 926.
[27] Malevanets, A. and Kapral, R., Microscopic model for FitzHugh-Nagumo dynamics, Phy. Rev. E 55 (1997), no. 5, 897-926.
[28] Muratov, C. B., A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type, Discrete Contin. Dyn. Syst. Ser. B4 (2004), no. 4, 867-892.
[29] Morita, Y., Ninomiya, H., Monostable-type traveling waves of bistable reaction-diffusion equations in the multi-dimensional space, Bull. Inst. Math. Acad. Sin. (N.S.) 3 (2008), no. 4, 567-584.
[30] Muratov, C. B. and Novaga, M., Front propagation in infinite cylinders. I. A
variational approach, Commun. Math. Sci. 6 (2008), no. 4, 799-826.
[31] Muratov, C. B. and Novaga, M., Front propagation in infinite cylinders. II. The sharp reaction zone limit, Calc. Var. Partial Differential Equations 31 (2008), no. 4, 521-547.
[32] Nagumo, J.S., Arimoto, S. and Yoshizawa, S., An active pulse transmission line simulating nerve axon, Proc. IRE 50, 2061-2071 (1962).
[33] Ninomiya, H., Taniguchi, M., Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations 213 (2005), no. 1, 204-
233.
[34] Ohta, T., Mimura, M. and Kobayashi R., Higher-dimensional localized patterns in excitable media, Physica D, 34 (1989), 115-144.
[35] Ohta, T. and Nakazawa H., Self-organization in an excitable reaction-diffusion system. II. Reduction to a coupled oscillator, Phys. Rev. A 45 (1992), 5504-5511.
[36] Polyanin, A. D., Handbook of linear partial differential equations for engineers and scientists, Chapman & Hall/CRC, Boca Raton, FL, 2002.
[37] Petrich, D. M. and Goldstein, R. E., Nonlocal contour dynamics model for chemical front motion, Phys. Rev. Lett. 72 (1994), 1120-1123.
[38] Reinecke, C. and Sweers, G., A positive solution on RN to a system of elliptic equations of FitzHugh-Nagumo type, J. Differential Equations 153 (1999), no. 2, 292-
312.
[39] Reinecke, C. and Sweers, G., Existence and uniqueness of solutions on bounded domains to a FitzHugh-Nagumo type elliptic system, Paci_c J. Math. 197 (2001), no. 1, 183-211.
[40] Rinzel, J. and Terman, D., Propagation phenomena in a bistable reaction diffusion system, SIAM J. Appl. Math. 42 (1982), no. 5, 1111-1137.
[41] Taniguchi, M., Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal. 39 (2007), no. 1, 319-344.
[42] Vitolo, A., On the Phragmen-Lindelof principle for second-order elliptic equations, J. Math. Anal. Appl. 300(2004), no. 1, 244-259.
[43] Volpert, A. and Volpert, V., Existence of multidimensional travelling waves and systems of waves, Comm. Partial Differential Equations 26(2001), no. 3-4, 421-459.
[44] Wei, J. and Winter, M., Standing waves in the FitzHugh-Nagumo system and a problem in combinatorial geometry, Math. Z. 254 (2006), no. 2, 359-383.
[45] Yanagida, E., Mini-maximizers for reaction-diffusion systems with skew-gradient structure, J. Differential Equations, 179(2002), no. 1, 311-335.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6841-
dc.description.abstract本篇論文主要研究在N維空間中擴散的費滋漢那古默系統行波解之存在性。這個系統有反梯度結構亦有非局部的梯度結構。此外,藉由適當的變換它在某些參數範圍之下亦有單調系統結構。
對於有界區域,變分法用來建構此系統有邊值條件平衡態的存在性。無界柱狀區域並且當方程的擴散系數相同時,我們藉由上述的三種結構來研究行波解。使用非局部的能量來證明行波解的存在性並用能量觀點刻畫波速;另一方面,使用反梯度結構,我們給出波與波速的最大最小能量公式刻畫方法。關於全空間區域,應用上解下解法來建立在N維空間中單邊穩定形式之行波解。除此之外,藉著反射方法也建立了在1維空間中無窮多個周期駐波。
zh_TW
dc.description.abstractIn this thesis, we study the existences of travelling waves of the diffusive FitzHugh-Nagumo system (DFHN) in R^N. This system has a skew-gradient structure as defined by Yanagida as well as a non-local gradient structure. In addition, by a suitable transformation, it also has a monotone-system structure on some parameter ranges. For bounded domains, the variational approach is applied to construct steady states of (DFHN) with Dirichlet or/and Neumann condition. For unbounded cylindrical domains, we study the travelling wave solutions via all of the three structures mentioned above when the diffusion coefficients in the equations are equal. By using the nonlocal variational energy, we establish the existence of a travelling front solution for (DFHN). Our existence result also obtains a variational characterization for the wave speed. On the other hand, using the skew-gradient structure, we give a mini-max formulation of the travelling wave and its speed. For whole domains, we employ the method of super- and subsolutions to establish the existence of monostable-type traveling wave solutions in R^N. Moreover, we construct infinitely many standing periodic solutions in R^1 based on the reflection method.en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:19:16Z (GMT). No. of bitstreams: 1
ntu-101-D95221001-1.pdf: 655736 bytes, checksum: e598e50538a41c248f2e81d3796860e1 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents1 Introduction.............................................1
2 Literature review........................................3
2.1 Steady states on bounded domains.......................4
2.1.1 Bistable cases.......................................4
2.1.2 Monostable cases.....................................5
2.2 Travelling waves in R^1................................6
2.2.1 Bistable cases.......................................6
2.2.2 Monostable cases.....................................7
2.3 Standing waves in R^N..................................7
3 Steady states on bounded domains and periodic solutions in R^N.....................................................9
3.1Introduction............................................9
3.2 Proof of the main theorem.............................10
4 Monostable-type solutions in R^N........................13
4.1 Introduction..........................................13
4.2 Proof of the main theorem.............................15
5 Travelling waves in a cylinder for bistable cases.......21
5.1 Introduction..........................................21
5.2 Preliminaries.........................................26
5.2.1 Basic properties of the weighted Sobolev space......26
5.2.2 Non-local operator..................................27
5.3 Variational approach..................................29
5.3.1 Boundedness and lower semicontinuity of the energy............................................29
5.3.2 Continuity of minimal energy......................32
5.3.3 Estimates for the travelling speed................33
5.4 Existences and properties of minimizers with negative energy................................................34
5.5 Existence of travelling solution......................37
5.6 Skew-gradient structure...............................40
5.7 Neumann problem.......................................42
5.8 Appendix..............................................43
Bibliography..............................................45
dc.language.isoen
dc.title在N 維空間中的費滋漢那古默系統之行波解zh_TW
dc.titleTravelling wave solutions of the diffusive FitzHugh-Nagumo
system in R^N
en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee林太家(Tai-Chia Lin),陳宜良(I-Liang Chern),夏俊雄(Chun-Hsiung Hsia),郭忠勝(Jong-Shenq Guo),石志文(Chih-Wen Shih)
dc.subject.keyword費滋漢那古默系統,行波解,反梯度系統,變分法,上解下解法,zh_TW
dc.subject.keywordFitzHugh-Nagumo system,travelling waves,skew-gradient structure,variational method,the method of super- and subsolutions,en
dc.relation.page48
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-07-03
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf640.37 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved