Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6719
Title: 各式弱性微分性質與函數的量度性質
Metrical properties of functions in terms of various forms of weak differentiability
Authors: Chun-Liang Lin
林俊良
Advisor: 劉豐哲
Keyword: 弱微分,弱導數,
approximate limsup,approximate limit,approximately differentiable,approximate derivative,Lipschitz continuous,Holder continuous,
Publication Year : 2012
Degree: 博士
Abstract: 依循W. Stepanoff、H Whitney及H. Federer的工作,我們研究函數與各種弱性微分有關的量度性質。綜合他們的工作,可知以下四個敘述的等價性:
(1)u在D上幾乎處處幾近可微(approximately differentiable);
(2)給定ε>0,存在一個定義在R^n上的連續可微函數v,使得u與v相異點所成的集合的測度小於ε;
(3)u的一次差分的幾近上極限(approximate limsup)在D上幾乎處處有限;
(4)u的一階幾近偏導數在D上幾乎處處存在。
接著,W. S. Tai與F. C. Liu把這些結果推廣到更高階(非負整數)的弱性微分性質。我們更進一步地將其推廣到一般階(不限定為非負整數),證明了以下定理:
主要定理. 對γ>0,以下敘述是等價的:
(1)u在D上擁有γ階Lusin性質;
(2)u在D上幾乎處處γ階Lipschitz連續;
(3)u在D上幾乎處處γ階偏Lipschitz連續。
對於證明主要定理的重要工具─Whitney擴張定理,我們也做了仔細的研究,附加上範數的估計,將定理重新敘述成更容易應用的型式。
Metrical properties of measurable functions in terms of various forms of weak differentiability are studied along a line suggested by works of W. Stepanoff, H. Whitney, and H. Federer which can be summarily described as stating that the following four statements are equivalent:
(1) u is approximately differentiable a.e. on D.
(2) Given epsilon > 0, there is a C^1 function v on R^n such that |{x in D : u(x) does not equal v(x)}| < epsilon.
(3) ap-limsup_{y tends to x}|u(y)-u(x)|/|y-x|< ∞ for almost all x ∈ D.
(4) First order approximate partial derivatives of u exist a.e. on D.
W. S. Tai and F. C. Liu then generalize the results to the situation involving higher (integral) order of weak differentiability. For a further generalization to fractional order, we prove the following theorem:
Main Theorem. For gamma > 0, the following statements are equivalent:
(1) u has Lusin property of order gamma on D.
(2) u is approximately Lipschitz continuous of order gamma
at almost every point of D.
(3) u is partially approximately Lipschitz continuous of order gamma at almost all point of D.
Whitney’s Extension Theorem, which is a main tool for the proof of the Main Theorem, is also given a detailed consideration and reformulated in a form with appropriate norm estimates. This form seems to be of a final touch and can be applied more effectively.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6719
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-101-1.pdf562.23 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved