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Abstract

Metrical properties of measurable functions in terms of various forms
of weak differentiability are studied along a line suggested by works of W.
Stepanoff, H. Whitney, and H. Federer which can be summarily described
as stating that the following four statements are equivalent:

(1) w is approximately differentiable a.e. on D.

(2) Given e > 0, there is a C'! function v on R™ such that |[{z € D : u(x) #
v(x)}] <e.
|u(y)—u(z)|

=z < O© for almost all x € D.

(3) aplimsup

Yy—
(4) First order approximate partial derivatives of u exist a.e. on D.

W. S. Tai and F. C. Liu then generalize the results to the situation involving
higher (integral) order of weak differentiability. For a further generalization
to fractional order, we prove the following theorem:

Main Theorem. For v > 0, the following statements are equivalent:

(1) w has Lusin property of order~ on D.

(2) w is approximately Lipschitz continuous of order 7 at almost every
point of D.

(3) w is partially approximately Lipschitz continuous of order ~ at almost
all point of D.

Whitney’s Extension Theorem, which is a main tool for the proof of the
Main Theorem, is also given a detailed consideration and reformulated in
a form with appropriate norm estimates. This form seems to be of a final
touch and can be applied more effectively.



1 Introduction

Metrical properties of measurable functions defined on a measurable sub-
set of R™ will be studied through approximate partial derivatives. Different
from classical partial derivatives, approximate partial derivatives can be in-
troduced for functions defined on a measurable set and stay the same when
functions are redefined on sets of measure zero. In other words, the pro-
cess of taking approximate partial derivatives is a more stable process than
that of taking classical partial derivatives. This fact is important because
the functions that arise naturally are usually those that are limit functions
under certain limit processes, and therefore they might not be defined every-
where. Even though one starts with a class of functions which have certain
regularity properties, one may end up after certain limit process with a much
larger class of functions most of which do not enjoy the original regularity
properties and has to satisfy oneself with weaker regularity properties for
the enlarged class of functions. Our study of metrical properties of functions
follows this line of thought when differentiability of functions are in view.
The most well-known example of this approach is the Lusin Theorem:

Theorem 1. Suppose that u is a measurable function defined on a measur-
able set D C R", then for any € > 0 there is a continuous function v defined
on R"™ such that |[{x € D : u(z) #v(z)}| <e.

Here, we use |A| to denote the Lebesgue measure of a subset A of R™.
It follows from Lusin theorem that every measurable function on D is the
limit a.e of a sequence of continuous functions. It is therefore expedient to
weaken the concept of continuity in order to describe measurable functions.
This leads to approximate continuity. A function u defined on D is called
approximately continuous at x € D if there is a measurable subset S of D
with density one at  such that u|g, the restriction of u to S, is continuous at
x. Using approximate continuity, Lusin theorem can be restated as follows.

Theorem 2. A function u defined on a measurable set D C R" is mea-

surable if and only if u is approrimately continuous almost everywhere on
D.

This means that starting from the class of continuous functions, we ob-
tain the class of measurable functions by weakening the concept of continuity
appropriately. Now as Whitney [16] has shown, if we start with the class
of continuously differentiable (C!) functions we shall arrive at the class of



approximately differentiable functions which is related to the class of contin-
uouosly differentiable functions in the same way as the class of measurable
functions is related to the class of continuous functions through Lusin the-
orem. Actually, Whitney proved the following theorem:

Theorem 3 ([16]). Let u be a measurable function on D. Then u is ap-
proximately differentiable a.e. in D if and only if for any € > 0, there is a
C! function v defined on R™ such that |[{x € D : u(z) # v(z)}| < e.

A function u on D is called approximately differentiable at x € D if
there is a measurable subset S on D with density one at z such that u|g is
totally differentiable at z, i.e. there is d = (dy,--- ,d,) € R™ such that

i W) —{u@) +d-(y —2)}

=0.
yeD,y—z ly —

Note that d is uniquely determined and d; is the approximate partial deriva-
tive of u|s at x in e; direction if linear density of S at z in this direction is
1, where {e1,--- ,e,} is the standard basis of R".

A real number [ is called an approximate limit of a measurable function
fatx € Dif the set {y € D : |f(y) — | < €} has density 1 at x for every
€ > 0. Since [ is unique when it exists, it is called the approximate limit of f
at z and is denoted by ap !;1’1_1’>I:1t f(y). Observe that the approximate limit of f

at x exists if and only if it exists when f is restricted to a certain measurable
subset of D. Because of this fact the symbol ap lim f(y) applies whenever
Y=

f is defined on a measurable set with density 1 at #. Then a measurable
function v on D is approximate differentiable at x if there is d € R™ such

that ap li_r}n “(y)f{ul(yxzif'(yfx)} = 0, and the approximate partial derivative
Yy xr

w if it exists

and if confusion is not likely we denote it by the classical notation %.
J

ap(%?(ac) in direction e; of u at = is defined as ap ’1112%

It was proved by Stepanoff [14] that a measurable function v on D is
approximately differentiable a.e. if and only if at almost every point in D,
it has approximate partial derivatives in each coordinate direction. This
is distinctly different from the classical case when differentiability and par-
tial derivatives replace approximate differentiability and approximate partial
derivatives respectively, and suggests that it might be convenient to consider
approximate differentiability and approximate partial derivatives of higher
order and to study how they are related to the differentiability of higher



order in the classical sense. For this purpose we introduce first some ter-
minologies to be used later. In the following definitions u is a measurable
function defined on a measurable set D C R™ and k is a nonnegative integer.

Definition 1. wu is said to have Lusin property of order k if for any ¢ > 0,
there is a C*-function v defined on R™ such that |{z € D : u(x) # v(x)}| < e.

It is easy to see that if w has Lusin property of order k, then for a.e.
x € D there is a polynomial T, of order less than or equal to k such that

ap lim [u(y) — Te(y)

=0. 1.1
yoe |y — aff (1)

If (1.1) holds, u is called approximately Taylor-differentiable of order k at
z € D and the unique polynomial 7' is called the approximate Taylor poly-
nomial of u at x. Note that approximate continuity and differentiability
can be viewed as approximately Taylor-differentiability of order 0 and 1
respectively.

We have already defined first order approximate partial derivatives of u.
Naturally, approximate partial derivatives of u of higher order can be defined
inductively, and they are measurable on wherever they are defined[12]. If
confusion is not likely, we shall use the classical notation to denote approx-
imate partial derivatives. wu is said to have unbiased approximate partial
derivatives up to order k at z € D if the approximate partial derivatives
of u of order less than or equal to k are defined at x and if all the mixed
approximate partial derivatives do not depend on the order of taking the
approximate partial derivatives.

Definition 2. u is called partially approximately Taylor-differentiable of
order k at x € D if u has unbiased approrimate partial derivatives up to

order k and if

ap lim |%($ + (yi — xi)e;) — Téf,?p(?/i)’
Yi— T |yi — xi’k_‘od

— 0, (1.2)

for each 1 <1i <mn and |a| < k, where

T (yi) == 11 Hpatie; @) Wi = z;).
=0



Note that (1.2) always holds true for |a] = k — 1 by the existence of
approximate partial derivatives of u. What we really concern with are those
a’s with |o| < k — 2. Note also that if u € VVZIZ’CI(Q), then w is partially
approximately Taylor-differentiable of order k£ at a.e. x € 2. Recall that
for a multi-index o = (o, - -+ , o), where each «; is a nonnegative integer,
la| = > 1 ;i (cf. p.2 in [17] for notations related to multi-index «).

Definition 3. For k € N, u is called approximately Lipschitz continuous of
order k at x € D if there is a polynomial P, of order less than or equal to

k — 1 such that .
ap lim sup lu(y) — Pe(y)]

< Q.
Y=z ]y - $|k

Here, the approximate limsup of a function g at x is the infimum of the
real numbers ¢ such that the set {g > ¢t} has density 0 at z.

The following theorem in [6] and [8] generalized the results of Stepanoff,
Whitney (Theorem 3) and H. Federer. ( When k = 1, the equivalence of (2)
and (3) in Theorem 4 is the theorem 3.1.16 in [4] and the equivalence of (1)
and (4) is the Stepanoff Theorem mentioned above. )

Theorem 4 ([6],[8]). For a function w defined on D, the following four
statements are equivalent:

(1) w is approximately Taylor-differentiable of order k at almost every
point of D;

(2) w has the Lusin type property of order k on D;

(3) w is approximately Lipschitz continuous of order k at almost every
point of D;

(4) w is partially approximately Taylor-differentiable of order k at almost
every point of D.

The equivalence of (1) and (2) in Theorem 4 is first stated and proved
in [6] under the further assumption of the measurability of the coefficients
of the approximate Taylor polynomials, while the equivalence of (1) and (4)
is stated without proof in [6]. And the the equivalence of (1), (2), and (3)
is proved in [5] with the byproduct that the coefficients of the approximate
Taylor polynomial are measurable functions of . Also note that in Theorem
4 the equivalence of (1) and (3) is a form of Rademacher phenomenon.



To describe and to prepare for our further extension of these works, we
o
introduce first some definitions. Fix a finite number v > 0, let ¥ be the

largest integer < v and write v = ’C;’+u, then 0 < pu < 1. A function u on D
is called approximately Lipschitz continuous of order vy at x € D if there is

a polynomial P,(y) of order at most 7 and centered at = such that

- P,
ap lim sup M < 00

1.
T (1:3)

Note that P, (y) is uniquely determined at each point x € D where it exists.
A function u on D belongs to the class Lip,,(v, D) if u is approximately
Lipschitz continuous of order v at almost all points of D. Observe that for
7 > 0 any function u € Lip,,(y, D) is approximately Taylor-differentiable

of order % a.e. on D with T, = P,. Hence the coefficients of P,(y) are
measurable functions of x.
For an open set Q C R", we denote by C} () the space of all those

function v € C”7(§2) such that g:fj € CY#(K) for each compact set K C Q

when |a| = 7. A function u on D is said to have Lusin property of order ~y if
for every e > 0 there is a function v € C} (R") such that |[{z € D : u(z) #
v(x)}| < e. The space of all functions on D which have Lusin property of
order = is denoted by LC'Y) (D). Note that, when y € N, the definition here
is equivalent to Definition 1 By Theorem 4 in [16] and Rademacher Theorem
for differentiability a.e. of locally Lipschitz functions.

And similar to the definition above, for v >0, u is said to be partially
approximately Lipschitz continuous of order 7 if u has unbiased approximate

(o]
partial derivatives up to order 7, and each approximate partial derivative

[e% o .
gz—}j, la| <7, satisfies

i |9 @ (i~ w)er) — P ()|
p lim sup

. |yl — xi|77|a| oo, (14)

for each 1 < i < n, where

5 ~Jal _

i 1 aa—i_lezu

PO (yi) == 1 Dpactie; ()i = ;).
=0

Our purpose in this thesis is to generalize Theorem 4 to the following
theorem:



Theorem 5. For v > 0, the following statements are equivalent:
(1) uw € LCY(D).
(2) u € Lip,, (v, D).

(3) w is partially approzimately Lipschitz continuous of order v at almost
all point of D.

Theorem 5 (or Theorem 4) allows us to establish a generalization of
Theorem 4 in [16], and the method of the proof implies an interesting conse-
quence which contains in particular a substantial generalization of a theorem
of Currier [3].

Preliminaries on measurability of sets related to density are given in §2.
A discussion in detail of Whitney’s Extension Theorem, which is the main
tool to obtain the C*-function while proving Theorem 5, is given in §3. We
will prove Theorem 5 together with a remark that it implies a consequence
alluded to above. §5 consists of some remarks-and applications of Theorem

5.

2 Measurability of Sets

The following theorem guarantees the measurability of sets and functions
appearing in this note while considering approximate limits. Let E be a
set in R™"*™ define E, := {y € R™: (z,y) € E} for x € R". The open
ball centered at ¢ with radius r in a Euclidean space is denoted by B,(c) as
usual.

Lemma 1. Suppose that E is a measurable set in R™™  f a measurable
map from D to R™. If S is a set of positive numbers and g a lower semi-
continuous function on S, then the following sets D1 and Do are measurable:

Dy:={zxeD: |E.NB.(f(x))|>g(r) VresS}
Dy:={xeD: |E,NDB|>g(r) for each ball B containing f(x)
with radius r € S}.

Proof. Fix r > 0. Since the set E := {(z,y) € E: z € D, |y — f(z)| < r}
is measurable in R"*_ by Fubini Theorem, the function z — |Ey| = |E, N
B, (f(z))| is measurable on D. Therefore, {x € D : |E, N B, (f(x))| > g(r)}
is measurable in R™. To show that D; and D, are measurable, we first

choose a countable dense subset S of S and let @ = B1(0) N Q™, where Q



is the set of rational numbers. Then the lemma follows from the following
expressions of Dy and Ds:

Dy =N, gl € D:[E; N B (f(z))| = g(r)},
Dy = mre§,qu{$ € D |Ey N By(frq(x)) = g(r)},

where f,., := f + rq is also measurable on D for each r € S and g€ Q. It
is obvious that the left-hand side is contained in the right-hand side of each
of the expressions. To show the opposite direction for D1, suppose that x is

a point in D such that |E; N B,(f(x))| > g(r) for all r € S. For any r € S

we can choose a sequence {r;};eny C S converging to r, then
BN B,(f(2))| = lim |E, 0 By, (f(«))] > liminf g(r) > g(r)
J—»00 J—00

by the continuity of |E, N B.(f(z))| in r. A similar argument for Dy holds
by continuity of |E, N By (frq(x))| in (r,q).
O

Remarks.

1. In the definition of D; and D in Lemma 1, if B, (c) is replaced by cubes
(or bounded sets of any given shape whose boundary is of measure
zero) with dilation r and translation ¢, the Lemma still holds true.

2. Lemma 1 is still valid if ”>" replaced by ”<” and if the upper semi-
continuity of g is assumed instead of lower semi-continuity.

Since it makes no difference to define a point of density by using balls or
cubes either containing or centered at the point, when points of density are
concerned, we have the freedom to choose one that simplifies arguments.

The following corollary illustrates how Lemma 1 applied in proving mea-
surability of functions or sets.

Corollary 1. Suppose that {uq}a|<k 5 a family of measurable functions on
D and Py(y) = 30 <k Ua(z) (y—x)*. Then f(z) := aplimsup,_,, @) =Pe (y)l

al ly—z|7
s a measurable function of x.

10



Proof. For each M > 0, f(x) < M if and only if the set D, := {y € D :
lu(y) — Pe(y)| < (M —1/p)|y — |7} has density 1 at = for some p € N. Thus
the set {x € D : f(z) < M} can be expressed as

| Dap O By (2))|

U N U eD:
peN | lgeN SGN{CC |B,n(x)|

1
2(1—6)V0<r<1/s}
which is measurable by applying Lemma 1 by taking E = {(x,y) € D x D :
lu(y) — Pe(y)| < (M —1/p)|ly —z|7}, f the identify map on D, S = (0,1/s),
and g(r) = (1 —1/q)|Br(0)| for each p,q,s € N. O

3 Whitney’s Extension Theorem with Norm Esti-
mates

In 1934, Whitney gave the necessary and sufficient condition of the existence
of a C*-extension of a function defined on a closed subset F' in R”. The
extended function constructed by Whitney grows without bound from the
closed set and hence there is no estimates of the extended function in terms
of C*-norm. By applying suitable cut-off methods, it is possible to give an
estimate of C*-norm of the extended function under Whitney’s conditions
without further assumptions which may not be necessary as in [13], [17].

Suppose that k is a nonnegative integer, we shall first define C*-functions
on a closed subset £ of R™ in Whitney’s sense. Consider a collection U =
{ta }|a|<k of real functions on F'. For such a collection of functions, define
the corresponding Taylor type polynomial T'(U, x;y) of order k centered at
z € F by

Tay= Y WDy

lo| <k

Note that DyT(U, z;y) = Y u‘”iﬂl(x)(y—m)ﬁ. For convenience, Dy T(U, x;y)
1B|<k—la
olel

will be denoted by T, (U, z;y) where Dy = T oy Ty By simple com-
T oy07 - 0y0

putation, for z1,x9 € F and |of < k,

Ugag(x2) — ToapgU,x1;2
T azy) - Tallhyaisy) = ) Leplid) = Taep@hnia) (s
IBI<k—l|al
(3.1)

11



And for such a family U, we will denote for 0 < s <1

MU, F) = ma sup lua ()]
ISR eer )T
Ms F:Z Ua\Y)— L STY)| . d
SR S
T #y
M,U, F) = My(U, F) v My y(U, F).

Note that
My (uv F) = SUPgzeFr>0 Mlﬂfﬂ”(u’ F)v

M27S(uv F) = SUPgzeFr>0 M278»$7T(u’ F)v

where

MU, F) :=sup{|ua(y)| : y € Br(z) N F,|a| < k}
My 20 (U, F) = sup{ e ladl .y » ¢ B (z) N F,y # 2 ]a| <k},

|z y|rtaled

for z € F and r > 0. (Note that M5, (U, F) = 0 if B,(z) N F = {z}
according to usual convention. )

Following Malgrange[11], a family ¢/ = {ua }|qj<p of functions on F' will
be called a C*-jet on F if

‘ua('z) — Ta(ua Y; Z)|
Tz ol

=0 (3.2)

for x € F and all @ with |o| < k. The limit here means that

lim My 0., (U, F) = 0. (3.3)

Note that a C*-jet U is uniquely determined by ug on intF. Thus when
F =R", we will denote M4(U,R"™) by Ms(up).

Following Whitney, a function u on F is called a C*-function if there
is a CF-jet U = {ua}jaj<k on F such that u = ug, and in this case we say
that u is adapted to the C*-jet U. We note that in general a C*-function
on F may be adapted to several C*-jets, for we can change the values of
ul,s, 0 < |a] < k at finitely many isolated points of F without violating
(3.2). Our purpose is to prove the following strengthened form of Whitney
extension theorem.

Theorem 6. A function u defined on F can be extended to a C*-function
v on R™ if and only if u is C* on F. Moreover, if u is adapted to the C*-jet

12



U, for each € > 0, v can be chosen to be C*° on F°¢, D% = uy on F for
la] < k, and suppv is contained in the e-neighborhood of F'. Furthermore,
for each 0 < s < 1, the estimate

M, (v) < CM, (U, F) (3.4)
holds for some constant C depending only on n, k and €.

Remark:
In fact, the condition (3.2) can be replaced by a little weaker one: for each
|ua(y) - Ta,x(y)|
z,y—z via F ‘y — ;p‘k*“ﬂ

for z € OF N F’; and

=0

T [ua(y) = Lo, ()]

=0
y—z via F |1/ — z‘k‘—|a\

for z € intF.

We precede the proof by describing the method of defining the extended
function v outside F' and by giving some necessary estimates. The method
of extension is basically that of Whitney[15] with some modifications due to
Stein[13]. However, our norm estimate of v is more explicit and refined.

3.1 Extension of C*-functions on F

To define the values of v outside F', we need the Whitney decomposition
of F¢[15]. For a closed subset F' C R", there is a collection {Q;}ien of
nonoverlapping closed cubes such that

(P1) UienQ; = F<
(P2) diam(Q;) < dist(Q;, F) < 4diam(Q);) for each i € N;

(P3) For each Q;,, the number of @;’s which intersect @, is less than 12"

(6").

For each i € N, denote by @} the closed cube with the same center as );
with the length of its side 9/8 times that of @);. According to (P») and (Ps3),
each Q)] intersects less than 12" Q}’s. There is a C* partition of unity

13



{¢i}ien of F¢ subordinate to {intQ;};en such that for each multi-index o,
r € R" and ¢ € N,
|Doti(x)| < Andist(z, F)~1o

for some constant A, depending only on « and n.
For each i € N, choose ¢' on F such that dist(Q;, F) = dist(¢, Q;), and
define v : R — R by

u(x) if x € F;
v(z) = { S ¢i(x)T (U, x) ifx ¢ F. (3.5)

€N
Remarks:

1. Observe that for x € F, y € F*¢, the following inequalities hold for
those ¢ € N such that y € Q;:

|z — &' < 4y = al, (3.6)
and hence .
ly — &' < bdist(y, F). (3.7)
2. Note that v depends on the choices of {£'};cn.

3. Since v is locally a finite sum of C*°-functions on F° v is infinitely
differentiable on F° and for any multi-index « and x € R,

D%(z) = %D“ (¢ U, %))
= U X g DO ei@) U, &5 2)

1€EN Lo

= 3 Y e D Pei(a) U, € 2)
ieN,2eQ; f<a

Proposition 1. There exists a constant C = C(n,k) such that for each
re€F, yeFe |la| <k, 0<s<1andf € F with |y — & = dist(z, F) we
have the following estimates:

(a) For each i with x € QF,

ly — a|Ftelel

< CM2,5,$,4|y—:c|(uv F)

and ]
ToU,&5y) — TaU, & y)l
|y _ §|k+s—\a|

< CMQ,s,x,4\y—z| (uv F)

14



(b)

o o ‘ 1 s—|a
Z Z WD Boi(y)TsU, 5 y)| < CMQ,s,x’G‘yﬂl(u,F)dzst(y’F)m la
ieN B<a,B#a :

Proof. (a) If y € QF, both & and ¢ belong to Byjy—z)(x) by (3.6), thus by
applying (3.1)

ToU, &5 y) — TaU, 73y)]

M2,s,m,4\yfx| (uv F) (4|y - x|)k+s—\a+ﬁ| |y - ‘T“ﬂl
18|<k~|a
S CM27S71'74|y7-'E|(u7 F)|y - x‘k+s_|a"

IN

and similarly

’Ta(uvé-’uy) o Ta(u,g,y)’ S CMQ,S,.’L’,4|y~z|(u7 F)|,y _ §‘k+87|a“

(b) Since > ¢; = 1 and it is locally a finite sum of smooth functions on
1€N
Fe, for each multi-index a # 0 and y € F°,

0=D%>_¢)w) = > _ D*¢i(y)-

€N 1€N
Hence,
> Wﬁﬂ!pa—ﬁ@(y)jﬂﬁ(u’ 380

1€N <o, f#a
= Z WLIB)I Z Da_ﬁgbz(y)(Tﬂ(Z/ng?y) _Tﬁ(u7£,y))‘

B<a,BF#a ieN

a' . —|la— s—

< Z Blla—p)! Z Aa—BdZSt(ya F) l B‘CM2,S,1,4|y—z|(u7F)|y - §|k+ 1Al

BLa,B#x 1€EN

< OMyypapy—of U, F)dist(y, F)k+s—lol;

in the inequality above, we have used (a) and the fact that 3= D* 8¢, (y) =

€N
0 if o # S
0

15



Lemma 2. There is a constant C = C(n, k) such that for x € F, y € F°,
la] <k, 0<s<1 and§ € F satisfying |y — §| = dist(y, F),

’Dav(y) - Ta(uvay)‘
‘y _ x’k+sf|a\

< CMQ,S,:U,ZL]y—z\ (ua F)

and
’Dav(y) _Taa’{vf;y)‘
‘y _ £’k+sf|a\

< OMQ,s,z,ZL]y—x\ (uv F)

Proof. Since > ¢; = 1 on F° and by using Proposition 1 at appropriate
€N
places, we have

D (y) — Ta (U, z;y)|

< Z ¢i(y)‘Ta(u7§i;y) _Ta(u,x;y)‘ + Z Z WiﬁﬂDaiﬁqsi(y)Tﬁ(uvéi;y)
1eN:yinQ7 1eN p<a,f#a

< ) NZ 0 AOCMQ,S,:E,4|ZI*I|(U7 F)‘y = x‘k+s’|a‘ R CM2,s,x,4dist(y,F) (U, F)’y _ x’kJrsflal
ieN:xeQ?

< CMQ,s,xA\y—xHy - x‘k+s—|a[’
and also
‘Dav(y) -1 (Z/{, £ y)| - C]V[2,s,m,4\y7:£| ’y w é—|k+s—\a|'
]

Lemma 3. There exists a constant C = C(n,k) such that for y € F¢ and
0<s<1,
|D%(y)| < OM(U, F)(1 + dist(y, F)kTe=lel)

if la| <k, and
[D%(y)| < CMas(U, F)dist(y, )
if la| =k + 1.
Proof. For each y € F€¢ and £ € F with |y — £| = dist(y, F), if i € N is such
that y € QF, then by (3.7)

T. (U, & y))| S Juars(E)|ly — €18/ 1

|B|<k—|al

S MU, F)(5dist(y, F))P!
|B|<k—|al
CM,(U, F)(1 + dist(y, F)kts—la),

IN A

IN
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Thus, for |a| < k, |[D%(y)| is dominated by
> hWITU I+ Y Y gD ey TsU. )l

ieNyeQ; iEN,2€QF B<arBa
< CAMy (U, F)(1 + dist(y, F)Fs1el) 4 C My (U, F)dist(z, F)k+s=l
< COM U, F)(1+ dist(y, F)F+slel),
where Proposition 1(b) has been involved.
Now for |a| = k+1, since DPT(U,£%;-) = 0for |3| = k+1and 3. D¢, =

i€N
0if v =#£0,

Do)l = 1Y Y gl D) TaU, € )|

ieN B<a,|B|<k
ol oa— i
Z Blla—pB)! Z |D ﬂ@(y)HTﬁ(U,g ' Y) —T,B(L(,E;y)|
B<a,|B1<k i€EN
O[' - —|la— S—
> et X Aampdist(y, F)14 IO My (U, F)ly — €[V
B<a,|BI<k i€eN
C My, . (U; F)dist(y, F)*=L,

IN A

IN

O]

Lemma 4. There exists a constant C-= C(n,k) such that for all o with
la] =k, y,z € F¢, and 0 < s < 1,

|D%0(2) = D%(y)| £ CMos (U, F)|z = y|°.

Proof. Fix y,z € I’ with y # z, denote the segment connecting y and z by
L.

In case dist(L,F) > |z — y| > 0, it follows from Lemma 3 that for all
w € L C F¢,

V(D) (w)| < CMy (U, F)dist(w, F)*!

—
< CMsyU, F)|lz — y[s_l,
thus

|D(z) — D(y)| < fy (V(D)((1 =ty + t2)]]2 — yldt
CMo (U, F) [} |2 =yl |z — yldt
CM275(U, F)|z —yl°.

IVARVAY

In case dist(L, F') < |z —y]|, choose w € L and £ € F such that |w—¢&| =
dist(L, F) < |z —y|. Then

ly =&l < |y —w[+ [w — €] < 2]z —y|

17



and
2 =& <[z —w|+ |w—§ <2[z -yl

Therefore,

[D%(z) — D*(y)| < ID“U(Z)—ua(é)\Hua()— D (y)|

= [D%(zy) — TaU, & 2)| + [Ta (U, & y) —

< OMas(U, F)|z — &7+ CMa (U, F)ly — fls
<

CM, (U, F)|z —yl°,
by Lemma 2. O

“v(y)|

Lemma 5. v € C*(R") and D*v = u, on F for |a| < k.
Proof. For each x € F|
[ D%(y) — Ta(U, z3y)|

lim =0 (3.8)
- — g|k—lal
vk ly = =]
by (3.3) and Lemma 2, and hence
i — T, (U, x;
iAW) — Tl _ o (3.9)
y—=x ‘y - ;p)k*ﬁﬂ

We are going to show that D% exists and coincide with u, on F' for
|a] < k . First note that v = w = ug in F' by the definition of v. Suppose
that we have shown that D®v = u,, in F for each |a| < k < k, then for each
lo| <k, |8 =1 and z € F, it follows from (3.9) and the partial derivatives
of To, (U, z;-) that

h
lim | PRHEHRRDTE (@)
0 o) ae) e
h—0 IA|
. |D*v(x+hB)—Ta(U,z;2+hB)| |To (U, z;24+h)—To(U,z;2) =Ty g (U,z;2)h| }
< Jim { [(a-+h)—] * 7

= 0,

which shows that D*T5y exists and equals a4 g at each x € F. By repeating
the process until k = k — 1, we have the desired result. Finally, again from
(3.9), the continuity of D%v for |a| < k follows from that the fact that for
each x € F

lim D(y) = lim(D%(y) - Tald, 2;y)) + lim To(U, 23 y)

y—z
= ue(z) = D(x).

18



Proof of Theorem 6 The necessary part is obvious. For the other part,
note that Lemma 5 shows the existence of a C*-extension of u. To show
the remaining part of Theorem 6, observe first that for any o with |a| < &,
z,y €ER"and 0 <s <1,

at+By(r
IDou(y) — > Py — )]

1BI<k—lof
_g|E—lal
< (k- Ial)‘ | >l D (a + (y - 2)t) — D(a)|dt
YI=kyza

< (h—lo) X ML OMy W P (y — o)t

=k y>a
= CMyU,F)ly — x]k+s_|a|,

by Lemma 4 and Taylor’s Theorem with integral remainder.

In order to arrive at estimate (3.4), we need a suitable cut-off function
defined as below. Fix a smooth function ¢ € C*°(R") with suppy C B(0,1),
p>0and [¢=1. Fore > 0,let p(r) = "p(c tz). Let ¢ = Pe/3* X Fae s
where F, := {z|dist(z,F) < r} for r > 0. Then ¢y € C*°(R"), » =1 on
F,/3, 1% = 0 outside I, 0 <4 < 1, and for each o with |a] <k + 1,

D% oA C D%l
1D%Plloo-$1C foexc) |79

for some constant C = |B(0,1)|(1 + (3/2)"™) = C(n, k) max{1, (1)*1} =
C(n,k,e).
(Note that max [[D%pl|| is a constant only depending on n and k.)

|o| <Fe+1
Define w = v, then w € C¥R™), w = v in intF, 3 O F and suppw C
suppyp C F.. This implies that D%w = D% = uq onintF, 3 O F for [a] < k
and D = 0 on FY for all a.
Moreover, for any x € F.\F and |o| < k, by Lemma 2

| D%w(z)| < Z sy D o(@)|| D Py ()]
< 2 Aetg O M (U, F)(1 + dist(z, F)F-171)
< Z At g O MU, F)(1+ b 1)
< C’M (U,F)
where C' is a constant only depends on n,k and €. .. max |[[D%W]|s0 <

jal<k
CM,(U,F).
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Similarly, for x € F.\F and |a| =k + 1 and 0 < s < 1, by Lemma 3

D sk D@D ()] + D))
P> zm%@CMA%FN1+Mg@JmH#w)
B<a,B#a
+C My, o(U, F)dist(z, F)*!
CM;U,F){ > Wiﬁ)'(l + 5k+1) + dist(x,F)S_l}
B<a,fAa ’

CM,(U, F)dist(z, F)*~!

| D%w ()|

IN

IN

IN

IN

because 1 = el 75571 < (14¢)e*~1 < Cdist(x, F)*~L. Thus, for any z € F¢
and |a] =k +1,

|Dw(x)| < CMsU, F)dist(z, F)5 L.
Now, we are going to show that for any z,y € R™ and |a| = k,
|DRw(y) = Dw(a)| < CM. U Fly— ol (3.10)
for some constant C'= C(n, k,<). In case |y —z| > 1,

[ D*w(y) — D*w(x)| < 2 1D wllos < CM(U, F) < CM,(U, F)ly — z|*.
al<

For |y — x| < 1, denote L := {(1 —t)x +ty : t € [0,1]}. In case dist(L,F) >

ly —x| >0, (L C F9)

| B8ty o ()

Jo IV(D¥w)((1 — ) + ty) ||y — x|dt

Jy OM(U, F)dist((1 — t)a + ty, F)* |y — x|dt
CMy(U, F) [y ly = 2|5~ |y — z|dt

CM, (U, Fly — z*.

[ IAIAIA

In case dist(L, F') < |y — x|, choose w € L and £ € F such that |w—¢| =
dist(L, F) < |y—z|. It is easy to see that |z —&| < 2|ly—x| < 2 forall z € L.
Since for any |3| < k and z € L,

MU, F
mane < S MU Eom < o, F),
m<k—lg
and

TaU,&y) —TaU, & x)| < CMs(U, Fly — x|

20



by mean value theorem with the previous estimate. Therefore,

| D%w(y )—Daw(ﬂ?)!

< Z sy D o(y) D Y (y) — DPu(x) D> Fyp(z))|

< Z aa gD o(y) — TaU, & )| DP9 (y)| + | TU. & 9)|| D* P (y) — D* P ()]
HTB(U &y) - T,B(U &a)||D* P (a )!+|Tﬁ(u &) = DPo(x)||D* Py (x)}

< CM,U,F) Z aagyly — €7 1 V(DO Py) ooy — 2
Hy — 2l max HD“lﬁHoo + |z — gt 1Al max | D% loo}

< OM(U, F) Z Ay (2 y — eVl + ﬁg?}ﬁleD%Hoo\y—w\
+ly — x| rlgfzx DYoo + 25y — w|F s~ ‘B'lrlgfﬁllll?%\loo}

< CM.,U, F)\y—x\s

", For any z,y € R" and |a| =k,
Finally, with (3.10), for any =,y € R™ and || < k,

at+Bo(x
IDew(y) — 3 BBy )P

1BI<k—lo

< (k- ya|)| | 5 bt SRR (1 — t)a + ty) — DYo()|dt
vI=ky2a

< (k- !af)l | %:> 'y—(f’aifo CM (U, F)|((1 = )z + ty) — z|*dt
v=k~za

< CM,U,F)ly— z|*tslel,

These give the estimate (3.4).
Remarks:

1. In fact, v can be chosen to be analytic on the union of F¢ and the set
of isolated points of F' by choosing ¢; ’s and ¢ to be analytic on F*
and the fact that v equals to T'(U, z;y) near x for each isolated point
x of F.

2. Bach u, in a C*-jet is continuous on F, hence when F is compact,
M (U, F) must be finite.

3. In case that F is a general set, we can similarly define a C*-jet on F
by assuming (3.2) holds for each z € F, and define a C*-function on
F in the same way. Then Theorem 6 also holds.
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4. From the proofs of Lemma 3, Lemma and Theorem 6, it follows that
for 0 < s <1, if for each z € F, My 5, (U, F) is finite for some r > 0,
then each D%, |a| = k, is locally Holder continuous with exponent s;
And if

lim My s 2 (U, F) =0
r—0

for each z € F, then

i [P0 (y) = D*o(@)]
y—u ly — x|

=0
for each x € R™ and |a| = k.

3.2 (C°-functions on F

It is natural now to consider the C'°°-functions on a closed subset F' of R".
Let U = {uq} be a collection of real functions on F, we say that U is a
C*>-jet on F if for each k € N, the subfamily Uy := {ua }|o|<k s 2 C*-jet on
F; and a function u is a C°°-function on F' if there is a C*°-jet U on F such
that u = wug. Note that the definition of C'**°-function on F' is essentially
following the fact that NpenCF(R™) = C*(R"). We are going to show a
similar result for C*°-functions on I as Theorem 1.

Theorem 7. A function u defined on F' can be extended to a C*°-function
v on R™ if and only if u is C*° on F. Moreover, if U is a C>®-jet such
that u = wq, then for-any ¢ > 0, v can be chosen so that D“v = u, on F
for each multi-index o, suppv contained in the e-neighborhood of F', and for
each nonnegative integer k

Mo({DaU}|a|§k, Rn) <5 CmaX{Mo(uk, F), 8}
for some constant C' = C(n, k,¢e).
To prove the theorem, for each i € N, let
k; == sup{k € N: |m\f?1§ u (€9 < dist(Q;, F)~Y/?}
and define

o(z) = { u(z) ‘ if zeF
T Yien @i(@)T Uy, &) if x ¢ FL
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Note that it is possible that k; = oo, in which case U, = U and the power
series T'(Uy,, &', x) converges absolutely on R™ by the estimate

_ gillod 1.
Z ’uaOE )‘| £z||o¢| <di St(Q F 1/22 ‘.f E ‘ _ dist(Qi,F)_l/Qen‘w_f | < 0.

Thus, v € C*°(F°) and for each multi-index «, and for y € F*°,

=>2. Bl(a Da Boi(y)TsUn,, 5 y).

€N f<a

Now, in reference to the proof of Theorem 6, to show that v € C*°(U/) and
D% = uy on F for each multi-index «, it suffices to show that for each
keN,zeF and |of =k —1,

o e .
lim | D% (y) — T Uy, x5 y)]

gl |y = x|

=0.

For this, we separate the numerator as follow:

1D2uly) = Lo Uso i)

= |22 raay D o) T s € v) ~ Tollhi, i)

S ien 91(9) [Talh; €)= Tollhi, mig)].

+| Y58 X WDQ‘[}@(ZJ)TBWI«,?;Q)\
ZEN,8<aB7éa : .

HE L mpp 0uw) T e, £50) = To(Ue. €5 0)

= I+1I+1II.

IN

From Proposition 1, we know that
I+ 11 <C(n,k)Ms gz aly—o (U, )|y — |

To estimate III, we need the following lemma which can be proved by in-
duction on the dimension easily.

Lemma 6. Suppose t > 0, | is a nonnegative integer, and o denotes n-
dimensional multi-index. Then

tel - nhtlet 1 (G — (j — 1)Ly Len+l=it  yl+lont

2o STt (+1) M

lal>1 j=2
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Moreover, if we further suppose that 0 <t <1, then

t|a| niT2¢lent

D

1<]a

Since Uy, is a C*-jet on F, each u, is locally bounded on F, therefore,
miz = {Jua(y)| : y € Bi(x),|a| < k} < oo for each € F. Hence, if
y € F°N B,(z) where r = min{1/5,7(1 + my,.)~2/8}, then for each i € N
such that y € @7,

lo — & <4y —=| <1
= |ua(é)| < mp, forall |of <k

= max |ua (§9)] < Mo < (8ly — x| /7) 712 < dist(Qi, F) /2
= ki >k

Thus, ITI is dominated by

Sl A pdist(y, BBl v Pemel, g
iENyeQ; f<a,f#a ¥ ik k+1-BI<PI<ki—18]
< Ay Aa=pdist(y, 7)1l > dist(Qi, )72y — €'
iENyeQ; f<a,fta ' k+1—|BI<y|<ki—|8] ~
< ﬁiﬁ).Aa-ﬁdist(y,F)"B"‘a' 8 %(5dist(y,F))'”"l/2
iENYeQ! f<a,fta ' k+1-1B8I<|y]
< C ¥ grisgydist(y, )P0 Ji(Bdist(y, F)P112
B<aBta ' k+1=1B|<lv] . " )
e _k | "l 4 5di F k+4+1—|B| 5ndist(y,F
< C ¥ grgndist(y, F)PIHel(5dist(y, F)) " ZSt(y(k)+1f|5\)!e
B<a,fa
_ 51161 S 3/2
= C(5<azﬁ;éa (k+1—|ﬂ\)!)dwt(y’ F)
< Cly—zf*?
Therefore,

D« —ToUp,z;
| v(y)lyiw(‘ Ty < C(MZ,O,x,4|yfz|(uka F)+y— x’1/2)
— 0 as y—z,y € F°.

Now for 1 > & > 0, procede similarly as above, we have for |a| = k and

y € Fa2\F,
[D(y)| < [D(y) — ual(&)] + [ualb)
< Cmax{MyU, F),c}.
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Then by Taylor’s Theorem with integral remainder,
Mo({Dv}|a|<k, Fr2) < Cmax{Mo(Uy, F), e}

Finally, by multiplying v by a cut-off function as in the proof of Theorem 6,
we get the extended function desired.
The following corollary is a straightforward application of Theorem 7.

Corollary 2. The intersection of all LC*)(D), k € N, is the set LC(>) (D)
consisting of measurable functions w on D which have Lusin property of
order oo, that is, for each € > 0, there is a C*°-function v defined on R"
such that |[{x € D : u(x) #v(x)}| <e.

Proof. Tt suffices to show that N, LC™*) (D) ¢ LC*)(D). Suppose that u
is a measurable function on D such that for each € > 0 and k € N, there is
v, € OF(R™) satisfying |Ex| := [{zx € D : u(z) # vi(z)}| < e27%. Note that

all the approximate partial derivatives % := 1, of u exist a.e. and, for

k> lal, uqg = %O;ﬂ’“ a.e. on D\ (N E)) whose complement in D has Lebesgue
measure less than . Thus, we can choose a closed subset F' of D\(NyEk)
with |D\F| < ¢ such that u, = %(;ff“ on F for each k > |a|. We can conclude
that v € LC(>®)(D) by applying Theorem 7 with the C®-jet U := {u,}. O

4 Proof of Theorem 5

We prove first a lemma which contains the key step in the proof of the
implication (3) = (2) and will also be used to obtain similar results in the
next section.

Lemma 7. There is a positive constant Cy, such that, for each M > 0,

_ P:):
ap lim sup lu(y) ()

<C,M 4.1
e T " (1)

holds true for almost every point x in the set D]@ consisting of the points
x € D satisfying

\%(w + (yi — zi)ei) — Péii(yi)\

aplim su <M
P yiﬁ‘zip lyi — xi"y—|o¢|
o 7
for all1 <i<n, |a| <7, where Py(y) := ZWK% 5%—3(@@ —x)*.
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Proof. For 1 < i < mn and a set A C R", let J; = {a = (a1, - ,ap) :

la < Y,0i = aiyr = -+ = an = 0}, ma(A) = {yi € R: 2+ (yi —
zi)e; € A}, and Dy = {y; € mio(D) 1 |4 (x + (i — 24)e;) — PO () <
Mly; — z;71 Yo € J3}. Fix 1 > 7 > 0. We will recursively define a
family {Dy, .5, : li,---,l; € N;1 < i@ < n} of subsets of D as follows.

For [y € N, let D), = Dj be the collection of points x € D satisfying
that | Dy, N [a,b]| > 7(b — a) whenever [a,b] is a closed interval containing
z1 and b—a < I} L D;, is measurable by Lemma 1. Suppose that for
1 <i<n-1andl,--,l; €N, ameasurable subset D, ... ;, of D is
defined, then for l;41 € N, let Dy ooty DlT1,~~~7li+1 be the set of x € Dy, ...y,
such that |Dj11, N Tit1,2(Dyy o g;) N ]a, b]| > 7(b— a) whenever z;11 € [a, b]
and b —a < [ +11 Then each {Djy, ... ;,};,en is an increasing sequence of
measurable sets by Lemma 1, and | DL\ Uy, .. 1wenDy, .. 1,] = 0. Note that if
y=(y1, - ,yn) € D satisfies y1 € Dy ;1) and y; € D; iy N7; ) (Diy - 1)
for each 2 < i < n, then

|u(y) = Pr(y)]

< O S VR Wil
< EDE Zaej My, — @ |7-|a‘%l°
)

S (Z‘Oc|<'y (Xl)Mly x‘

= C(n,’Y)]V[|y + o™
where z() = (x1,~-- Tiy Vit |- - - s4n) (note that 2@ = ¢ 2™ = z and
O 4 (y;—x;)e; = 20~1). Thus, for each 2 € Dy, ..., and any rectangle R =
[a1, bl] -+ X [an, by] containing & with max;<;<n(b; — a;) < minj<;<y, li_l,

{y € DE, : July) = Po(y)| < Cln, V)M|y — 2"} N R|

Vv

> Tn(bn - an) te (bl - al)
= 7"|R|,

since y; € m; ) (Dyy, 1;_,) implies 20=Y € Dy, .. ;_,. Hence for each x

1—¢—1
belonging Nien Uy, .. 1, eN Dll’__ 1,0 We have

aplimsupM < C(n,’(;)M <e"M = C,M.

y—z ly — x| N

Thus (4.1) holds a.e., because the complement in D]@ of Nien Upy . lneN
Dlllff_lln is a null set. O
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We shall need the following lemma given by De Giorgi in [2].

Lemma 8 ([2]). Let o be a positive real number less than or equal the volume
of unit ball in R™. Then there exists a constant C depending only on n, k
and o such that for each x € R™, r > 0 and any measurable set E C B, (x)
with |E| > or™, the inequality

o C
Do) < oy [l

holds for each polynomial p with degp < k and each muilti-index o.

We are going to prove Theorem 5 by showing that the sequence of impli-
cations (1) = (3) = (2) = (1) holds. The implication (1)=-(3) follows from
the fact that a measurable set has linear density 1 in each direction e; at
almost all points of the set, and the following formula of Taylor remainder

of a C7 function v:

=AY LD ) (P8 (@ (y - a)t) — L2 () dt.

The implication (3)=-(2) follows from Lemma 7, if one notes that the
set of points in D where (1.3) holds can be expressed as the following union
of sets: d

Unren{z € D : aplim sup M < C,M},
y—T ly— 2|7
and the set of points in DD where u is partially approximately Lipschitz
continuous of order 7 is also the union of Dﬁ[ over M € N.

For the implication (2) = (1), we write P,(y) = Z‘ <5 uc:)f'$) (y —x)”
o<y al

and fix ¢ > 0. There exists a sequence of compact sets {Kj}jen in R”
such that |R™\ Ujeny K| < € and dist(Kj,,Ujx;,K;) > 0 for each jo € N.
Thus by considering the intersection of K; and D for each j € N, we may
assume that |D| < oco. There exists M > 0 such that the complement of

{z € D : aplimsup,_,, w < M} in D has measure strictly less than

e. Let o be the ratio of |B;(0) N Bj(e1)| to |B1(0)] and 7 = (24 0)/4 € (0,1)
(note that o is a number depending only on n). For [ € N, let

Dy:={xe€D:|E,NB.(z)| > 7|By(z)| VO <7 <1/},

where E, = {y € D : |u(y) — Px(y)| < M|y — z|"}. D; is an increasing
sequence of measurable subsets of D by Lemma 1, and |D\ Ujen Dy| = 0.
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We can choose Iy € N and a compact subset K of D;, such that |[D\K| < e.
For z1,29 € K with 0 < r := |x; — x2| < 1/ly, consider the set E :=
E.,NBy(x1)NE;, N By(x2), then |E| > (1—0/2)|B,(0)|. By Lemma 8 with

k:%andp:Pml_Pmy

[ua(@1) = X g ja) 52 (@2 — 21)°)

|Dg(Pz1 (y) — Pr, (y))|y=z1|

el fE |P901(y) - ng(y)’dy

=S {5 1P (v) — u(@)|dy + [5 |uly) = Pe,(y)|dy}
%{IBT(Q) lz1 —y[Vdy + fBr($2) ly — x2|7dy}
CM|x; — 952]7_‘“',

VA VAN VAN VAN

for each o with |a] < ’C;’ Since K is compact, we can cover K by finitely
many balls with radius /5!, hence there is M > 0 such that |us(z1) —

S 1<k o] S (o —a1)P| < My~ ~1o for any 21,75 € K. (2)=(1)

then follows by Whitney’s Extension Theorem, concluding the proof of The-
orem 9.

Remarks.

1. Since the multi-indices a used in the proof of Lemma 7 are those in
Ui<i<nJi, it follows that (2) holds under weaker assumptions than
those stated in (3). For example, when 1 < v < 2, (1.3) holds a.e.
on D if and only if, for almost every € D, the approximate partial

derivative ue, := -(%‘—_ exists for 1 < i < n, and satisfies
K2

aplim sip 1 EEW=2)6) e @)
Yi—Ti ’yj = ‘Tjh

for all 1 <1¢ < j <n, and u satisfies

ap lim sup u(@ + (yi — mi)ei) — u(x) — ue, (x)(yi — i)
Y lyi — @7

< 00

for each 1 < i < n. In general, (1.3) holds a.e. on D if and only if
there is a permutation ¢ of {1,2,--- ,n} such that for a.e. x € D,

(1) for each multi-index o = (a1, a9, , @) with o] < ’CY), the ap-
proximate partial derivative

9% (n) ( 9% (n—1) < <a%<1)u))>
Uy = e _
o Qp(n) Cp(n—1) Qg(1)
04y \ Oy 1) Oz )
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exists; and

(2) for each |af < Y with Qgm) =0,

e (2 + (yi — zi)es) — PG (i)

aplim su < 00 4.2
b yi—mz‘p |yi — xih_la‘ (42)
holds for i = @(j) with ay;) = agjs1) =+ = Qgm) = 0.

2. In the implication (2)=-(1), the function v for (1) can be chosen such
that
My(v) < CM,({ua}, K),

where k =7 in the definition of M, (v) and M, ({ua}, K).

For a measurable function uw on D, set w,(\) = [{z € D : |u(x)] > A}|
for A > 0 and let My(D) be the class of measurable functions v on D such
that limy oo wy (A) = 0. If u € My(D), the nonincreasing rearrangement u*
of u is defined as u*(t) = sup{\ : w,(\) > ¢}.. With the notations defined
above, we have the following corollary of Theorem 5.

Corollary 3. Suppose that u € Lipgy (v, D) with the property that both u and
L(z) := aplimsup,_,, @) =Bl peiong to My(D). -Then for each ¢ > 0,

ly—z[7

there is v € C’%’“(]R”) whose norm is dominated by Cu*(e/3) V L*(¢/3) such
that

Hz e D :u(x) #v(z)}| <e,

where C' is a constant depending only on v and n.

Proof. For each ¢ > 0, let D = {z € D : u(z) < u*(¢/3), L(z) < L*(e/3)}.

Then |D\D| < 2¢/3. The corollary follows by applying Theorem 5 on D
and remark 2 above. O

5 Applications of Theorem 5 and Some Remarks

We now formulate a generalization of a theorem of Currier [3] which is a
direct application of Theorem 5.

Theorem 8. Suppose that u is a measurable function defined on a measur-

able set D C R? whose approximate partial derivatives (%‘1, % erist a.e.
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on D. If fori=1,2,

lu(z + (yi — z)e;) — u(z) — E?QZ (@)(yi — i)

ap lim sup 5 < 0, (5.1)
yi—wi lyi — @il
holds, and
ou ou
Bz X1, Y2) — 7.\
ap lim sup 92, )~ 5 (7)] < 00, (5.2)
Y2 T2 ’yQ - ng

a.e. on D, then all the second order approrimate partial derivatives of u

exist and 821(38—;2) = 8%2(88—;1) a.e. on D.

Suppose now that u is a function defined on a subset of R? containing
a segment L := (z1 — r,x1 + r) X {x2} for some r > 0. If the classical

first-order partial derivative %‘1 exists at each point in L and % exists at
1

x = (x1,x2), then there exists 0 < ¢ < r such that
ou ou 0%u

JRE— 5 ) e — = < —
Fr (y1, 2) = (x) 022 (@) (g1 — z1)| < |y1 — 21
whenever |y; — 21| < 0. Thus, (%‘l(-, xg) is' bounded on I := [z1 — §,z1 + ],

and hence u(-, x9) is absolutely continuous on I. Therefore,
u(y, x2) — u(z) = ,%ﬁ(ﬂ?)(yg—xl)l |
| [ G (b 22) — g (2) — G8(@) (1 = w0))dt] + 3| T8 (@) |y — 2]

2
31+ 15E @)Dy —aaf?

IN

for each |y; — x1| < 6. That is, (5.1) holds true at = for ¢ = 1. Similar
results also hold for ¢ = 2. Thus, the following corollary holds by Theorem 8

(note that (5.2) holds by the existence of the approximate partial derivative
32
azzauxl )

Corollary 4. Let u(x1,z2) be defined on an open subset O of R?, and let

the first-order partial derivatives 88—;1 and (%‘2 exist on O. Let D be the mea-

. . . . 2 2
surable subset of © on which the second-order partial derivatives 2%, 9%,
Ox{’ Oz;
92u

and the approximate partial derivative R exist. Then the approximate

; ; ; 0%u ; 0%u
partial derivative Jr05, Cvists and equals Y almost everywhere on D.

Clearly, Corollary 4 includes the following theorem of Currier [3] as a
special case.
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Theorem 9 ([3]). Let u(x1,w2) be defined on an open subset O of R

and let the first partial derivatives 887?1 and (%; exist on O. Let D be a

measurable subset of O on which the four second-order partial derivatives
R2u % 2u_ % Pu 8%
8;(;%’ 0x10x2’ Ox20T1’ 83;% r10x2 ~  Ox20T1
almost everywhere on D.

exist almost everywhere. Then 5

Theorem 5 is now applied to prove a generalization of Theorem 4 in [16].
First we quote a Lemma from [16].

Lemma 9. Let ¢ be a function defined on an interval I C R whose deriva-
tives exist up to order k and its k-th order derivative is bounded on I. Then

k 1 4 " i
¢(t2) — Z lld ¢(t1) (tz _tl)l + (k_ll)'/t (t2 _t)k_l(ddflgt) . d jt(:l))dt

fOT’ t1,t9 € I.

The following corollary is a generalization of Theorem 4 in [16] which
is used to prove (1)=>(2) and (3)=-(2) by induction on k in [6] and [§]
respectively.

Theorem 10. Suppose that O is an open set in R™, and u is a function

nd o
defined on O such that the partial derivatives gm'ff exist up to order Y at
every point of O and for almost every x € O,

0%u 0%u
M, i(z) := limsup 22 EF (i fi)fR)., - pga()] < 00 (5.3)
Yi=>T; |ly: + xih_w

for each | =% and1<i<n. Then u'ée LCO(0).

Proof. According to Theorem 5, it is sufficient to prove that (1.4) |a| < v
for almost every point in O. Suppose z is a point in O at which (5.3)
holds. Then, for each |a| < ’C; and 1 < ¢ < n, there exists § > 0 such that
x4 (yi — zi)e; € O and

got( —lal)eiy, gt —lal)eiy,

(x4 (yi — zi)e;) — ()| < Myi(z)+1

m aonr(%f\aDei

whenever |y; — z;| < 0. Thus, %(m + (y; — x;)e;) is a function on y; €

(¢}
(x; — §,2; + §) := I whose derivatives exist up to order ¥ —|a| and its
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(% —|a|)-th order derivative is bounded on I. By Lemma 9,

|22 (2 + (s — w)eq) — V4 ()]

; S lal—1, 90+ —lale; a+(5 —lal)e;
= | Yy —t) WO (g (- ) eg) — O (1)) dt|

(F —lal—1)! . gzt (T —lal)e; StV —lal)e;
< m| o lyi =t (Mo i(2) + D)t
Ma,i(z)+1 %’—|o¢|
= Masl)tl)
& ey Y

for |y; — z;| < . That is, (1.4) holds at x. Thus w is partially approxi-
mately Lipschitz continuous of order v at almost every point of O, hence
u € LCO(0). O

The following corollary is an application of Theorem 10 and Corollary
3, and it will be used to deal with the case when ~ is a positive integer (cf.

[5])-

Corollary 5. A C®'-function defined on an_open set O C R™ belongs to
LC*+1)(O). Moreover, for each ¢ > 0, there is a O*t'-function v on R"
such that [{zx € O :u(z) # v(x)} < e and

[vll w1 @my S Cllull ok 0)-
for some constant C' = C(n, k).

Lien and Liu [5] provided a sufficient condition for a measurable function
u to have Lusin property of order . The result can be improved slightly by
applying Corollary 4. We start the discussion by introducing some defini-
tions from [5]. Suppose that O is an open set in R" satisfying A-condition,
that is, there is a constant A > 0 such that |O(x,r)| > Ar™ for all x € O
and 0 < r < 1 where O(z,r) := O N B(xz,r). The space of all measurable
function v on O which is integrable on each bounded measurable subset of
O will be denoted by L}(O).

Definition 4. Let «y to be a positive integer, and L7(O) be class of all those
functions u € L} (O) such that

1. for almost all x € O, there is a polynomial T,(-) with degree < ~
satisfying

[u](z) := sup r~7 !

—_— w(y) — T (y)|dy < +o0;
R Rae s /O ) = Ty
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2. if we set
oula) = [uh () + [ July)ldy
O(z,1)
then oy, is in Mo(O).

Suppose u € L7(O). For those x € O at which 1 holds, denote

To(y) =) vale) (), ye

al

o<y

Then for each |a| < v — 1, uq is uniquely defined and measurable. To see
this, we need the following lemma of Calderon and Zygmund.

Lemma 10. There exists ¢ € C3°(R™) with suppp C B(0,1) such that for
every polynomial P on R™ of degree < ~ and every e > 0, ¢.x P = P, where

¢e(x) = e (e ).

Fix x € O, ue := ¢. % u is defined for sufficiently small € > 0. Then we
have
—n—|afyo 1 X7 Ua T o
Duc(ae) = DB+ | e T9DE = )~ (1) 3 2 )y

€
la|=y

The above integral is dominated by

Cemnlal [ s o flu) = T ()| + = ta (g — x[}dy
o=y

Ce—n—|o¢|{[u]7(aj)’B($75)|€’Y == fB(m)(l |Z é) ﬁ?ﬁx [ua(r)|edy}
a|="vy =7

IN

< Cerlel 5 0as e — 0 for o) <.

This shows that u (z) = DT, () is the limits of D%u.(x) for |a| < 7, hence
is measurable and uniquely determined. In particular, u(xz) = T, (z) at each
Lebesgue point x of u, i.e., u =T, = ug a.e. on O.

Note that from the definition of £Y(0), uy, |a| = 7, is not necessary
measurable nor uniquely determined, for by adding a finite function on the
highest coefficients, the assumption will not be violated. From now on , we
suppose further that u, is measurable for all || = ~. Then [u], is approx-
imately lower semi-continuous at x € O which is a point of approximate
continuity of all u,’s, therefore, [u], is measurable by a theorem of Kamke.
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Theorem 11. There exists a constant C > 0 depending only on n, A, and
v such that for all u € LY(O) whose u, are measurable for all |a| =, and
e > 0, there is a closed set F, C O and v, € C?(R") such that

1. L"(O\F;) < 2e,
2. ve =u, and D*v. = uqy for |a| < v on F., and

maX{MLUE, MQ’()’E} § CO’Z(E)

Proof. Fix € > 0, let
0, = {z € 0: 0u(x) < oL(0)}.
Then £"(O\O,) < e. Choose a closed set F. C O, so that
LYO\FY) < 2,
and u =T, = ug on F_.

1. For z € F. and |a| <=, by Lemma 8, for some constant C =

C(n, A7),
|DT(x)|| < CfOTI ()\dy
= [ul (@ )*fo y)ldy}
= Cau(l’) ()

ie, M; < Co}(e).

2. For ,y € F. and |a| < v. If |z — y[ < 3, we have

[ua(y) — D*(T:(y))]

D2 (Ty(2) = Te(2))] 2=y

Wfo wly—a)) 1 Tv(2) = Te(2)|dy

l— m|n+|a\ {ow,jy—a)) 1Tu(z) = u(2)ldz + [, |y—up [u(2) = Ta(2)|dy}

lv— ml”*'a‘ {owy—op Tu(2) = ul2)ldz + [o oy [u(z) = Te(2)ldy}

m{[ uly(y)ly — z[7L(O(y, ly — () + [uly(2) 2ly — 2|)7L"(O(x, 2|y — =[))}
e L )|y = 2L (B(y, [y — 2)) + [ul, (2) 2y — 2|)7L™(B(z, 2|y — 2[))}

Cly — 271 [uly (y) + [uls(2)}
Cly -z lo(e).

Q

INIACIA IAN IA IA A
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On the other hand, if |y — x| > 3,

[ua(y) — DT (y))|

< Jualy)l+ Y Mesmwly, g8l

1B|<y—lal
< ope)1+ Y |y—aflfl)

1B]1<y—|el

w2 (ly=z7 1o [
< Cop)(ypmar ¥ 2 g
[B|<y—|al
< Coi(e)2rlel 4 ST ovlel=Ishy — gp-lel
18]<y—a]

< Cojle)ly —z[lel

i.e., for each z € F. and |o| <7 — 1,

[ua = D*(T(y))]

zy—zTyel. |y — x]“/_l_“’"

:0’

and M271 < 002(6)
Thus, u|r, can be extended to a C7~ 1!l function o on R™ with
InaX{ML{,E, M2’17@E} = C’oZ(w)

Finally, apply Corollary 4 to find v. and F. with £*(R\E.) < 2t — L™(O\Fy)
and the estimate
max{Mi ., M1, } < Coj(x).

Simply let F. = F. N F. to conclude the proof. O
Finally, we give some remarks to conclude this thesis.

1. By modifying slightly the proof of Theorem 5, one can see that the
following statements are equivalent:

(1) For each e > 0, there is a function v € C} (R™) with

a2 a9
lim &Tg(y) - Wg(l’ﬂ

=0
y=r |y —

for all x € R" and || = 7 such that H{z € D:u(x)#v(z)} <e.
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(2) For almost all point x € D, there exists a polynomial P, centered
at x with degree < ’(; such that

ap lim lu(y) — P:(y)|

lim =2 =0 (5.4)

(3) For almost all point € D, the unbiased approximate partial

[¢]
derivatives of v up to order ¥ exist, and

|5 (@ + (i — wi)ed) — P ()]
ap lim
Yi—T; ’yi — xih—w

=0 (5.5

(e}
for each 1 <1i <n and |a| <7, where

To illustrate the modification of the proof, we show (3)=-(2) as follows.
Since

-
{reD:(54)holds at £} =Upen{z € D : ap;igi ‘—W < Cp/m},

and
{reD:(5.5) holdsat V1 < i <mn,|la| <V} = UmeNDf/m,

P

the implication follows from Lemma 7, where Cy,, P;(y), and Dy /m

as in the lemma.

are

. As we have indicated that statement (2) in Theorem 4 can be replaced
by statement (2)’ in the remark following the theorem, it is easy to see
that Theorem 5 reduces to Theorem 4 when v = k, hence Theorem 5
is a generalization of Theorem 4 as we claim.

. Ziemer proved a Rademacher type theorem (Theorem 3.8.1 in [17]) in
LP-context (see also [7]), the equivalence of (1) and (3) in Theorem
4 is the corresponding Rademacher type theorem in the context of
approximate limit and approximate supremum.
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