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摘  要 
 

依循 W. Stepanoff、H Whitney 及 H. Federer 的工作，我們研究函數與各種弱性微分有關

的量度性質。綜合他們的工作，可知以下四個敘述的等價性： 

(1) u 在 D 上幾乎處處幾近可微(approximately differentiable)； 

(2) 給定ε>0，存在一個定義在 Rn上的連續可微函數 v，使得 u 與 v 相異點所成的集合的測

度小於ε； 

(3) u 的一次差分的幾近上極限(approximate limsup)在 D 上幾乎處處有限； 

(4) u 的一階幾近偏導數在 D 上幾乎處處存在。 

接著，W. S. Tai 與 F. C. Liu 把這些結果推廣到更高階(非負整數)的弱性微分性質。我們更進

一步地將其推廣到一般階(不限定為非負整數)，證明了以下定理： 

主要定理. 對γ>0，以下敘述是等價的： 

(1) u 在 D 上擁有γ階 Lusin 性質； 

(2) u 在 D 上幾乎處處γ階 Lipschitz 連續； 

(3) u 在 D 上幾乎處處γ階偏 Lipschitz 連續。 

對於證明主要定理的重要工具─Whitney 擴張定理，我們也做了仔細的研究，附加上範數的估

計，將定理重新敘述成更容易應用的型式。 

 



Abstract

Metrical properties of measurable functions in terms of various forms
of weak differentiability are studied along a line suggested by works of W.
Stepanoff, H. Whitney, and H. Federer which can be summarily described
as stating that the following four statements are equivalent:

(1) u is approximately differentiable a.e. on D.

(2) Given ε > 0, there is a C1 function v on Rn such that |{x ∈ D : u(x) ̸=
v(x)}| < ε.

(3) ap lim sup
y→x

|u(y)−u(x)|
|y−x| <∞ for almost all x ∈ D.

(4) First order approximate partial derivatives of u exist a.e. on D.

W. S. Tai and F. C. Liu then generalize the results to the situation involving
higher (integral) order of weak differentiability. For a further generalization
to fractional order, we prove the following theorem:
Main Theorem. For γ > 0, the following statements are equivalent:

(1) u has Lusin property of order γ on D.

(2) u is approximately Lipschitz continuous of order γ at almost every
point of D.

(3) u is partially approximately Lipschitz continuous of order γ at almost
all point of D.

Whitney’s Extension Theorem, which is a main tool for the proof of the
Main Theorem, is also given a detailed consideration and reformulated in
a form with appropriate norm estimates. This form seems to be of a final
touch and can be applied more effectively.
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1 Introduction

Metrical properties of measurable functions defined on a measurable sub-
set of Rn will be studied through approximate partial derivatives. Different
from classical partial derivatives, approximate partial derivatives can be in-
troduced for functions defined on a measurable set and stay the same when
functions are redefined on sets of measure zero. In other words, the pro-
cess of taking approximate partial derivatives is a more stable process than
that of taking classical partial derivatives. This fact is important because
the functions that arise naturally are usually those that are limit functions
under certain limit processes, and therefore they might not be defined every-
where. Even though one starts with a class of functions which have certain
regularity properties, one may end up after certain limit process with a much
larger class of functions most of which do not enjoy the original regularity
properties and has to satisfy oneself with weaker regularity properties for
the enlarged class of functions. Our study of metrical properties of functions
follows this line of thought when differentiability of functions are in view.

The most well-known example of this approach is the Lusin Theorem:

Theorem 1. Suppose that u is a measurable function defined on a measur-
able set D ⊂ Rn, then for any ε > 0 there is a continuous function v defined
on Rn such that |{x ∈ D : u(x) ̸= v(x)}| < ε.

Here, we use |A| to denote the Lebesgue measure of a subset A of Rn.
It follows from Lusin theorem that every measurable function on D is the
limit a.e of a sequence of continuous functions. It is therefore expedient to
weaken the concept of continuity in order to describe measurable functions.
This leads to approximate continuity. A function u defined on D is called
approximately continuous at x ∈ D if there is a measurable subset S of D
with density one at x such that u|S , the restriction of u to S, is continuous at
x. Using approximate continuity, Lusin theorem can be restated as follows.

Theorem 2. A function u defined on a measurable set D ⊂ Rn is mea-
surable if and only if u is approximately continuous almost everywhere on
D.

This means that starting from the class of continuous functions, we ob-
tain the class of measurable functions by weakening the concept of continuity
appropriately. Now as Whitney [16] has shown, if we start with the class
of continuously differentiable (C1) functions we shall arrive at the class of
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approximately differentiable functions which is related to the class of contin-
uouosly differentiable functions in the same way as the class of measurable
functions is related to the class of continuous functions through Lusin the-
orem. Actually, Whitney proved the following theorem:

Theorem 3 ([16]). Let u be a measurable function on D. Then u is ap-
proximately differentiable a.e. in D if and only if for any ε > 0, there is a
C1 function v defined on Rn such that |{x ∈ D : u(x) ̸= v(x)}| < ε.

A function u on D is called approximately differentiable at x ∈ D if
there is a measurable subset S on D with density one at x such that u|S is
totally differentiable at x, i.e. there is d = (d1, · · · , dn) ∈ Rn such that

lim
y∈D,y→x

u(y)− {u(x) + d · (y − x)}
|y − x|

= 0.

Note that d is uniquely determined and dj is the approximate partial deriva-
tive of u|S at x in ej direction if linear density of S at x in this direction is
1, where {e1, · · · , en} is the standard basis of Rn.

A real number l is called an approximate limit of a measurable function
f at x ∈ D if the set {y ∈ D : |f(y) − l| < ε} has density 1 at x for every
ε > 0. Since l is unique when it exists, it is called the approximate limit of f
at x and is denoted by ap lim

y→x
f(y). Observe that the approximate limit of f

at x exists if and only if it exists when f is restricted to a certain measurable
subset of D. Because of this fact the symbol ap lim

y→x
f(y) applies whenever

f is defined on a measurable set with density 1 at x. Then a measurable
function u on D is approximate differentiable at x if there is d ∈ Rn such
that ap lim

y→x

u(y)−{u(x)+d·(y−x)}
|y−x| = 0, and the approximate partial derivative

ap ∂u
∂xj

(x) in direction ej of u at x is defined as ap lim
h→0

u(x+hej)−u(x)
h if it exists,

and if confusion is not likely we denote it by the classical notation ∂u
∂xj

.

It was proved by Stepanoff [14] that a measurable function u on D is
approximately differentiable a.e. if and only if at almost every point in D,
it has approximate partial derivatives in each coordinate direction. This
is distinctly different from the classical case when differentiability and par-
tial derivatives replace approximate differentiability and approximate partial
derivatives respectively, and suggests that it might be convenient to consider
approximate differentiability and approximate partial derivatives of higher
order and to study how they are related to the differentiability of higher
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order in the classical sense. For this purpose we introduce first some ter-
minologies to be used later. In the following definitions u is a measurable
function defined on a measurable set D ⊂ Rn and k is a nonnegative integer.

Definition 1. u is said to have Lusin property of order k if for any ε > 0,
there is a Ck-function v defined on Rn such that |{x ∈ D : u(x) ̸= v(x)}| < ε.

It is easy to see that if u has Lusin property of order k, then for a.e.
x ∈ D there is a polynomial Tx of order less than or equal to k such that

ap lim
y→x

|u(y)− Tx(y)|
|y − x|k

= 0. (1.1)

If (1.1) holds, u is called approximately Taylor-differentiable of order k at
x ∈ D and the unique polynomial T is called the approximate Taylor poly-
nomial of u at x. Note that approximate continuity and differentiability
can be viewed as approximately Taylor-differentiability of order 0 and 1
respectively.

We have already defined first order approximate partial derivatives of u.
Naturally, approximate partial derivatives of u of higher order can be defined
inductively, and they are measurable on wherever they are defined[12]. If
confusion is not likely, we shall use the classical notation to denote approx-
imate partial derivatives. u is said to have unbiased approximate partial
derivatives up to order k at x ∈ D if the approximate partial derivatives
of u of order less than or equal to k are defined at x and if all the mixed
approximate partial derivatives do not depend on the order of taking the
approximate partial derivatives.

Definition 2. u is called partially approximately Taylor-differentiable of
order k at x ∈ D if u has unbiased approximate partial derivatives up to
order k and if

ap lim
yi→xi

|∂αu
∂xα (x+ (yi − xi)ei)− T

(i)
α,x(yi)|

|yi − xi|k−|α| = 0, (1.2)

for each 1 ≤ i ≤ n and |α| < k, where

T (i)
α,x(yi) :=

k−|α|∑
l=0

1

l!

∂α+leiu

∂xα+lei
(x)(yi − xi)

l.
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Note that (1.2) always holds true for |α| = k − 1 by the existence of
approximate partial derivatives of u. What we really concern with are those
α’s with |α| ≤ k − 2. Note also that if u ∈ W k,1

loc (Ω), then u is partially
approximately Taylor-differentiable of order k at a.e. x ∈ Ω. Recall that
for a multi-index α = (α1, · · · , αn), where each αi is a nonnegative integer,
|α| =

∑n
i=1 αi (cf. p.2 in [17] for notations related to multi-index α).

Definition 3. For k ∈ N, u is called approximately Lipschitz continuous of
order k at x ∈ D if there is a polynomial Px of order less than or equal to
k − 1 such that

ap lim sup
y→x

|u(y)− Px(y)|
|y − x|k

<∞.

Here, the approximate limsup of a function g at x is the infimum of the
real numbers t such that the set {g > t} has density 0 at x.

The following theorem in [6] and [8] generalized the results of Stepanoff,
Whitney (Theorem 3) and H. Federer. ( When k = 1, the equivalence of (2)
and (3) in Theorem 4 is the theorem 3.1.16 in [4] and the equivalence of (1)
and (4) is the Stepanoff Theorem mentioned above. )

Theorem 4 ([6],[8]). For a function u defined on D, the following four
statements are equivalent:

(1) u is approximately Taylor-differentiable of order k at almost every
point of D;

(2) u has the Lusin type property of order k on D;

(3) u is approximately Lipschitz continuous of order k at almost every
point of D;

(4) u is partially approximately Taylor-differentiable of order k at almost
every point of D.

The equivalence of (1) and (2) in Theorem 4 is first stated and proved
in [6] under the further assumption of the measurability of the coefficients
of the approximate Taylor polynomials, while the equivalence of (1) and (4)
is stated without proof in [6]. And the the equivalence of (1), (2), and (3)
is proved in [5] with the byproduct that the coefficients of the approximate
Taylor polynomial are measurable functions of x. Also note that in Theorem
4 the equivalence of (1) and (3) is a form of Rademacher phenomenon.
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To describe and to prepare for our further extension of these works, we

introduce first some definitions. Fix a finite number γ > 0, let
◦
γ be the

largest integer < γ and write γ =
◦
γ+µ, then 0 < µ ≤ 1. A function u on D

is called approximately Lipschitz continuous of order γ at x ∈ D if there is

a polynomial Px(y) of order at most
◦
γ and centered at x such that

ap lim sup
y→x

|u(y)− Px(y)|
|y − x|γ

<∞. (1.3)

Note that Px(y) is uniquely determined at each point x ∈ D where it exists.
A function u on D belongs to the class Lipap(γ,D) if u is approximately
Lipschitz continuous of order γ at almost all points of D. Observe that for
γ > 0 any function u ∈ Lipap(γ,D) is approximately Taylor-differentiable

of order
◦
γ a.e. on D with Tx = Px. Hence the coefficients of Px(y) are

measurable functions of x.
For an open set Ω ⊂ Rn, we denote by Cγ

loc(Ω) the space of all those

function v ∈ C
◦
γ(Ω) such that ∂αv

∂xα ∈ C0,µ(K) for each compact set K ⊂ Ω

when |α| =
◦
γ. A function u on D is said to have Lusin property of order γ if

for every ε > 0 there is a function v ∈ Cγ
loc(R

n) such that |{x ∈ D : u(x) ̸=
v(x)}| < ε. The space of all functions on D which have Lusin property of
order γ is denoted by LC(γ)(D). Note that, when γ ∈ N, the definition here
is equivalent to Definition 1 By Theorem 4 in [16] and Rademacher Theorem
for differentiability a.e. of locally Lipschitz functions.

And similar to the definition above, for γ > 0, u is said to be partially
approximately Lipschitz continuous of order γ if u has unbiased approximate

partial derivatives up to order
◦
γ, and each approximate partial derivative

∂αu
∂xα , |α| ≤

◦
γ, satisfies

ap lim sup
yi→xi

|∂αu
∂xα (x+ (yi − xi)ei)− P

(i)
α,x(yi)|

|yi − xi|γ−|α| <∞, (1.4)

for each 1 ≤ i ≤ n, where

P (i)
α,x(yi) :=

◦
γ−|α|∑
l=0

1

l!

∂α+leiu

∂xα+lei
(x)(yi − xi)

l.

Our purpose in this thesis is to generalize Theorem 4 to the following
theorem:
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Theorem 5. For γ > 0, the following statements are equivalent:

(1) u ∈ LC(γ)(D).

(2) u ∈ Lipap(γ,D).

(3) u is partially approximately Lipschitz continuous of order γ at almost
all point of D.

Theorem 5 (or Theorem 4) allows us to establish a generalization of
Theorem 4 in [16], and the method of the proof implies an interesting conse-
quence which contains in particular a substantial generalization of a theorem
of Currier [3].

Preliminaries on measurability of sets related to density are given in §2.
A discussion in detail of Whitney’s Extension Theorem, which is the main
tool to obtain the Ck-function while proving Theorem 5, is given in §3. We
will prove Theorem 5 together with a remark that it implies a consequence
alluded to above. §5 consists of some remarks and applications of Theorem
5.

2 Measurability of Sets

The following theorem guarantees the measurability of sets and functions
appearing in this note while considering approximate limits. Let E be a
set in Rn+m, define Ex := {y ∈ Rm : (x, y) ∈ E} for x ∈ Rn. The open
ball centered at c with radius r in a Euclidean space is denoted by Br(c) as
usual.

Lemma 1. Suppose that E is a measurable set in Rn+m, f a measurable
map from D to Rm. If S is a set of positive numbers and g a lower semi-
continuous function on S, then the following sets D1 and D2 are measurable:

D1 := {x ∈ D : |Ex ∩Br(f(x))| ≥ g(r) ∀r ∈ S},
D2 := {x ∈ D : |Ex ∩B| ≥ g(r) for each ball B containing f(x)

with radius r ∈ S}.

Proof. Fix r > 0. Since the set Ẽ := {(x, y) ∈ E : x ∈ D, |y − f(x)| < r}
is measurable in Rn+m, by Fubini Theorem, the function x 7→ |Ẽx| = |Ex ∩
Br(f(x))| is measurable on D. Therefore, {x ∈ D : |Ex ∩Br(f(x))| ≥ g(r)}
is measurable in Rn. To show that D1 and D2 are measurable, we first
choose a countable dense subset S̃ of S and let Q = B1(0) ∩ Qm, where Q
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is the set of rational numbers. Then the lemma follows from the following
expressions of D1 and D2:

D1 = ∩
r∈S̃{x ∈ D : |Ex ∩Br(f(x))| ≥ g(r)},

D2 = ∩
r∈S̃,q∈Q{x ∈ D : |Ex ∩Br(fr,q(x))| ≥ g(r)},

where fr,q := f + rq is also measurable on D for each r ∈ S̃ and q ∈ Q. It
is obvious that the left-hand side is contained in the right-hand side of each
of the expressions. To show the opposite direction for D1, suppose that x is
a point in D such that |Ex ∩ Br(f(x))| ≥ g(r) for all r ∈ S̃. For any r ∈ S
we can choose a sequence {rj}j∈N ⊂ S̃ converging to r, then

|Ex ∩Br(f(x))| = lim
j→∞

|Ex ∩Brj (f(x))| ≥ lim inf
j→∞

g(rj) ≥ g(r)

by the continuity of |Ex ∩ Br(f(x))| in r. A similar argument for D2 holds
by continuity of |Ex ∩Br(fr,q(x))| in (r, q).

Remarks.

1. In the definition ofD1 andD2 in Lemma 1, if Br(c) is replaced by cubes
(or bounded sets of any given shape whose boundary is of measure
zero) with dilation r and translation c, the Lemma still holds true.

2. Lemma 1 is still valid if ”≥” replaced by ”≤” and if the upper semi-
continuity of g is assumed instead of lower semi-continuity.

Since it makes no difference to define a point of density by using balls or
cubes either containing or centered at the point, when points of density are
concerned, we have the freedom to choose one that simplifies arguments.

The following corollary illustrates how Lemma 1 applied in proving mea-
surability of functions or sets.

Corollary 1. Suppose that {uα}|α|≤k is a family of measurable functions on

D and Px(y) :=
∑

|α|≤k
uα(x)
α! (y−x)α. Then f(x) := ap lim supy→x

|u(y)−Px(y)|
|y−x|γ

is a measurable function of x.
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Proof. For each M > 0, f(x) < M if and only if the set Dx,p := {y ∈ D :
|u(y)−Px(y)| ≤ (M −1/p)|y−x|γ} has density 1 at x for some p ∈ N. Thus
the set {x ∈ D : f(x) < M} can be expressed as

∪p∈N ∩q∈N ∪s∈N{x ∈ D :
|Dx,p ∩Br(x)|

|Br(x)|
≥ (1− 1

q
) ∀ 0 < r < 1/s}

which is measurable by applying Lemma 1 by taking E = {(x, y) ∈ D×D :
|u(y)−Px(y)| ≤ (M − 1/p)|y− x|γ}, f the identify map on D, S = (0, 1/s),
and g(r) = (1− 1/q)|Br(0)| for each p, q, s ∈ N.

3 Whitney’s Extension Theorem with Norm Esti-
mates

In 1934, Whitney gave the necessary and sufficient condition of the existence
of a Ck-extension of a function defined on a closed subset F in Rn. The
extended function constructed by Whitney grows without bound from the
closed set and hence there is no estimates of the extended function in terms
of Ck-norm. By applying suitable cut-off methods, it is possible to give an
estimate of Ck-norm of the extended function under Whitney’s conditions
without further assumptions which may not be necessary as in [13], [17].

Suppose that k is a nonnegative integer, we shall first define Ck-functions
on a closed subset F of Rn in Whitney’s sense. Consider a collection U =
{uα}|α|≤k of real functions on F . For such a collection of functions, define
the corresponding Taylor type polynomial T (U , x; y) of order k centered at
x ∈ F by

T (U , x; y) =
∑
|α|≤k

uα(x)

α!
(y − x)α.

Note thatDα
y T (U , x; y) =

∑
|β|≤k−|α|

uα+β(x)
β! (y−x)β. For convenience,Dα

y T (U , x; y)

will be denoted by Tα(U , x; y) where Dα
y = ∂|α|

∂y
α1
1 ∂y

α2
2 ···∂yαn

n
. By simple com-

putation, for x1, x2 ∈ F and |α| ≤ k,

Tα(U , x2; y)− Tα(U , x1; y) =
∑

|β|≤k−|α|

uα+β(x2)− Tα+β(U , x1;x2)
β!

(y − x2)
β.

(3.1)
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And for such a family U , we will denote for 0 ≤ s ≤ 1

M1(U , F ) := max
|α|≤k

sup
x∈F

|uα(x)|;

M2,s(U , F ) := max
|α|≤k

sup
x, y ∈ F
x ̸= y

|uα(y)−Tα(U ,x;y)|
|y−x|k+s−|α| ; and

Ms(U , F ) :=M1(U , F ) ∨M2,s(U , F ).

Note that
M1(U , F ) = supx∈F,r>0M1,x,r(U , F ),
M2,s(U , F ) = supx∈F,r>0M2,s,x,r(U , F ),

where

M1,x,r(U , F ) := sup{|uα(y)| : y ∈ Br(x) ∩ F, |α| ≤ k}
M2,s,x,r(U , F ) := sup{ |uα(z)−Tα(U ,y;z)|

|z−y|k+s−|α| : y, z ∈ Br(x) ∩ F, y ̸= z, |α| ≤ k},

for x ∈ F and r > 0. (Note that M2,s,x,r(U , F ) = 0 if Br(x) ∩ F = {x}
according to usual convention. )

Following Malgrange[11], a family U = {uα}|α|≤k of functions on F will

be called a Ck-jet on F if

lim
y, z → x
y, z ∈ F

|uα(z)− Tα(U , y; z)|
|z − y|k−|α| = 0 (3.2)

for x ∈ F and all α with |α| ≤ k. The limit here means that

lim
r→0

M2,0,x,r(U , F ) = 0. (3.3)

Note that a Ck-jet U is uniquely determined by u0 on intF . Thus when
F = Rn, we will denote Ms(U ,Rn) by Ms(u0).

Following Whitney, a function u on F is called a Ck-function if there
is a Ck-jet U = {uα}|α|≤k on F such that u = u0, and in this case we say

that u is adapted to the Ck-jet U . We note that in general a Ck-function
on F may be adapted to several Ck-jets, for we can change the values of
u′αs, 0 < |α| ≤ k at finitely many isolated points of F without violating
(3.2). Our purpose is to prove the following strengthened form of Whitney
extension theorem.

Theorem 6. A function u defined on F can be extended to a Ck-function
v on Rn if and only if u is Ck on F . Moreover, if u is adapted to the Ck-jet
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U , for each ε > 0, v can be chosen to be C∞ on F c, Dαv ≡ uα on F for
|α| ≤ k, and suppv is contained in the ε-neighborhood of F . Furthermore,
for each 0 ≤ s ≤ 1, the estimate

Ms(v) ≤ CMs(U , F ) (3.4)

holds for some constant C depending only on n, k and ε.

Remark:
In fact, the condition (3.2) can be replaced by a little weaker one: for each
|α| ≤ k,

lim
x,y→z via F

|uα(y)− Tα,x(y)|
|y − x|k−|α| = 0

for z ∈ ∂F ∩ F ′; and

lim
y→z via F

|uα(y)− Tα,z(y)|
|y − z|k−|α| = 0

for z ∈ intF .

We precede the proof by describing the method of defining the extended
function v outside F and by giving some necessary estimates. The method
of extension is basically that of Whitney[15] with some modifications due to
Stein[13]. However, our norm estimate of v is more explicit and refined.

3.1 Extension of Ck-functions on F

To define the values of v outside F , we need the Whitney decomposition
of F c[15]. For a closed subset F ⊂ Rn, there is a collection {Qi}i∈N of
nonoverlapping closed cubes such that

(P1) ∪i∈NQi = F c;

(P2) diam(Qi) ≤ dist(Qi, F ) ≤ 4diam(Qi) for each i ∈ N;

(P3) For each Qi0 , the number of Qi’s which intersect Qi0 is less than 12n

(6n).

For each i ∈ N, denote by Q∗
i the closed cube with the same center as Qi

with the length of its side 9/8 times that of Qi. According to (P2) and (P3),
each Q∗

i0
intersects less than 12n Q∗

i ’s. There is a C∞ partition of unity
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{ϕi}i∈N of F c subordinate to {intQ∗
i }i∈N such that for each multi-index α,

x ∈ Rn and i ∈ N,
|Dαϕi(x)| ≤ Aαdist(x, F )

−|α|

for some constant Aα depending only on α and n.
For each i ∈ N, choose ξi on F such that dist(Qi, F ) = dist(ξi, Qi), and

define v : Rn → R by

v(x) :=

{
u(x) if x ∈ F ;∑
i∈N

ϕi(x)T (U , ξi;x) if x /∈ F. (3.5)

Remarks:

1. Observe that for x ∈ F , y ∈ F c, the following inequalities hold for
those i ∈ N such that y ∈ Q∗

i :

|x− ξi| ≤ 4|y − x|, (3.6)

and hence
|y − ξi| ≤ 5dist(y, F ). (3.7)

2. Note that v depends on the choices of {ξi}i∈N.

3. Since v is locally a finite sum of C∞-functions on F c, v is infinitely
differentiable on F c and for any multi-index α and x ∈ Rn,

Dαv(x) =
∑
i∈N

Dα
(
ϕiT (U , ξi;x)

)
=

∑
i∈N

∑
β≤α

α!
β!(α−β)!D

α−βϕi(x)Tβ(U , ξi;x)

=
∑

i∈N,x∈Q∗
i

∑
β≤α

α!
β!(α−β)!D

α−βϕi(x)Tβ(U , ξi;x)

Proposition 1. There exists a constant C = C(n, k) such that for each
x ∈ F , y ∈ F c, |α| ≤ k, 0 ≤ s ≤ 1 and ξ ∈ F with |y − ξ| = dist(x, F ) we
have the following estimates:

(a) For each i with x ∈ Q∗
i ,

|Tα(U , ξi; y)− Tα(U , x; y)|
|y − x|k+s−|α| ≤ CM2,s,x,4|y−x|(U , F )

and
Tα(U , ξi; y)− Tα(U , ξ; y)|

|y − ξ|k+s−|α| ≤ CM2,s,x,4|y−x|(U , F ).
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(b) ∣∣∣∣∣∣
∑
i∈N

∑
β≤α,β ̸=α

α!

β!(α− β)!
Dα−βϕi(y)Tβ(U , ξi; y)

∣∣∣∣∣∣ ≤ CM2,s,x,6|y−x|(U , F )dist(y, F )k+s−|α|.

Proof. (a) If y ∈ Q∗
i , both ξ

i and ξ belong to B4|y−x|(x) by (3.6), thus by
applying (3.1)

|Tα(U , ξi; y)− Tα(U , x; y)|
≤

∑
|β|≤k−|α|

M2,s,x,4|y−x|(U , F )(4|y − x|)k+s−|α+β||y − x||β|

≤ CM2,s,x,4|y−x|(U , F )|y − x|k+s−|α|,

and similarly

|Tα(U , ξi; y)− Tα(U , ξ; y)| ≤ CM2,s,x,4|y−x|(U , F )|y − ξ|k+s−|α|.

(b) Since
∑
i∈N

ϕi ≡ 1 and it is locally a finite sum of smooth functions on

F c, for each multi-index α ̸= 0 and y ∈ F c,

0 = Dα(
∑
i∈N

ϕi)(y) =
∑
i∈N

Dαϕi(y).

Hence,∣∣∣∣∣∑i∈N ∑
β≤α,β ̸=α

α!
β!(α−β)!D

α−βϕi(y)Tβ(U , ξi; y)

∣∣∣∣∣
=

∣∣∣∣∣ ∑
β≤α,β ̸=α

α!
β!(α−β)!

∑
i∈N

Dα−βϕi(y)(Tβ(U , ξi; y)− Tβ(U , ξ; y))

∣∣∣∣∣
≤

∑
β≤α,β ̸=α

α!
β!(α−β)!

∑
i∈N

Aα−βdist(y, F )
−|α−β|CM2,s,x,4|y−x|(U , F )|y − ξ|k+s−|β|

≤ CM2,s,x,4|y−x|(U , F )dist(y, F )k+s−|α|;

in the inequality above, we have used (a) and the fact that
∑
i∈N

Dα−βϕi(y) =

0 if α ̸= β.
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Lemma 2. There is a constant C = C(n, k) such that for x ∈ F , y ∈ F c,
|α| ≤ k, 0 ≤ s ≤ 1 and ξ ∈ F satisfying |y − ξ| = dist(y, F ),

|Dαv(y)− Tα(U , x; y)|
|y − x|k+s−|α| ≤ CM2,s,x,4|y−x|(U , F )

and
|Dαv(y)− Tα(U , ξ; y)|

|y − ξ|k+s−|α| ≤ CM2,s,x,4|y−x|(U , F )

Proof. Since
∑
i∈N

ϕi ≡ 1 on F c and by using Proposition 1 at appropriate

places, we have

|Dαv(y)− Tα(U , x; y)|

≤
∑

i∈N:yinQ∗
i

ϕi(y)|Tα(U , ξi; y)− Tα(U , x; y)|+

∣∣∣∣∣∑i∈N ∑
β≤α,β ̸=α

α!
β!(α−β)!D

α−βϕi(y)Tβ(U , ξi; y)

∣∣∣∣∣
≤

∑
i∈N:x∈Q∗

i

A0CM2,s,x,4|y−x|(U , F )|y − x|k+s−|α| + CM2,s,x,4dist(y,F )(U , F )|y − x|k+s−|α|

≤ CM2,s,x,4|y−x||y − x|k+s−|α|,

and also

|Dαv(y)− Tα(U , ξ; y)| ≤ CM2,s,x,4|y−x||y − ξ|k+s−|α|.

Lemma 3. There exists a constant C = C(n, k) such that for y ∈ F c and
0 ≤ s ≤ 1,

|Dαv(y)| ≤ CMs(U , F )(1 + dist(y, F )k+s−|α|)

if |α| ≤ k, and

|Dαv(y)| ≤ CM2,s(U , F )dist(y, F )s−1

if |α| = k + 1.

Proof. For each y ∈ F c and ξ ∈ F with |y − ξ| = dist(y, F ), if i ∈ N is such
that y ∈ Q∗

i , then by (3.7)

|Tα(U , ξi; y)| ≤
∑

|β|≤k−|α|
|uα+β(ξ

i)||y − ξi||β|/β!

≤
∑

|β|≤k−|α|
M1(U , F )(5dist(y, F ))|β|

≤ CM1(U , F )(1 + dist(y, F )k+s−|α|).
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Thus, for |α| ≤ k, |Dαv(y)| is dominated by∑
i∈N,y∈Q∗

i

ϕi(y)|Tα(U , ξi; y)|+ |
∑

i∈N,x∈Q∗
i

∑
β≤α,β ̸=α

α!
β!(α−β)!D

α−βϕi(y)Tβ(U , ξi; y)|

≤ CA0M1(U , F )(1 + dist(y, F )k+s−|α|) + CM2,s(U , F )dist(x, F )k+s−|α|

≤ CMs(U , F )(1 + dist(y, F )k+s−|α|),

where Proposition 1(b) has been involved.
Now for |α| = k+1, sinceDβT (U , ξi; ·) ≡ 0 for |β| = k+1 and

∑
i∈N

Dγϕi ≡

0 if γ ̸= 0,

|Dαv(y)| = |
∑
i∈N

∑
β≤α,|β|≤k

α!
β!(α−β)!D

α−βϕi(y)Tβ(U , ξi; y)|

≤
∑

β≤α,|β|≤k

α!
β!(α−β)!

∑
i∈N

|Dα−βϕi(y)||Tβ(U , ξi; y)− Tβ(U , ξ; y)|

≤
∑

β≤α,|β|≤k

α!
β!(α−β)!

∑
i∈N

Aα−βdist(y, F )
−|α−β|CM2,s(U , F )|y − ξ|k+s−|β|

≤ CM2,s(U , F )dist(y, F )s−1.

Lemma 4. There exists a constant C = C(n, k) such that for all α with
|α| = k, y, z ∈ F c, and 0 ≤ s ≤ 1,

|Dαv(z)−Dαv(y)| ≤ CM2,s(U , F )|z − y|s.

Proof. Fix y, z ∈ F c with y ̸= z, denote the segment connecting y and z by
L.

In case dist(L,F ) > |z − y| > 0, it follows from Lemma 3 that for all
w ∈ L ⊂ F c,

|∇(Dαv)(w)| ≤ CM2,s(U , F )dist(w,F )s−1

≤ CM2,s(U , F )|x− y|s−1,

thus

|Dαv(z)−Dαv(y)| ≤
∫ 1
0 |∇(Dαv)((1− t)y + tz)||z − y|dt

≤ CM2,s(U , F )
∫ 1
0 |z − y|s−1|z − y|dt

= CM2,s(U , F )|z − y|s.

In case dist(L,F ) ≤ |z− y|, choose w ∈ L and ξ ∈ F such that |w− ξ| =
dist(L,F ) ≤ |z − y|. Then

|y − ξ| ≤ |y − w|+ |w − ξ| ≤ 2|z − y|
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and
|z − ξ| ≤ |z − w|+ |w − ξ| ≤ 2|z − y|.

Therefore,

|Dαv(z)−Dαv(y)| ≤ |Dαv(z)− uα(ξ)|+ |uα(ξ)−Dαv(y)|
= |Dαv(zy)− Tα(U , ξ; z)|+ |Tα(U , ξ; y)−Dαv(y)|
≤ CM2,s(U , F )|z − ξ|s + CM2,s(U , F )|y − ξ|s
≤ CM2,s(U , F )|z − y|s,

by Lemma 2.

Lemma 5. v ∈ Ck(Rn) and Dαv = uα on F for |α| ≤ k.

Proof. For each x ∈ F ,

lim
y → x
y ∈ Fc

|Dαv(y)− Tα(U , x; y)|
|y − x|k−|α| = 0 (3.8)

by (3.3) and Lemma 2, and hence

lim
y→x

|Dαv(y)− Tα(U , x; y)|
|y − x|k−|α| = 0. (3.9)

We are going to show that Dαv exists and coincide with uα on F for
|α| ≤ k . First note that v = u = u0 in F by the definition of v. Suppose
that we have shown that Dαv = uα in F for each |α| ≤ k̃ < k, then for each
|α| ≤ k̃, |β| = 1 and z ∈ F , it follows from (3.9) and the partial derivatives
of Tα(U , x; ·) that

lim
h→0

|D
αv(x+hβ)−Dαv(x)

h − uα+β(x)|

= lim
h→0

|Dαv(x+hβ)−uα(x)−uα+β(x)h|
|h|

≤ lim
h→0

{
|Dαv(x+hβ)−Tα(U ,x;x+hβ)|

|(x+hβ)−x| +
|Tα(U ,x;x+h)−Tα(U ,x;x)−Tα+β(U ,x;x)h|

|h|

}
= 0,

which shows thatDα+βv exists and equals uα+β at each x ∈ F . By repeating
the process until k̃ = k − 1, we have the desired result. Finally, again from
(3.9), the continuity of Dαv for |α| ≤ k follows from that the fact that for
each x ∈ F

lim
y→x

Dαv(y) = lim
y→x

(Dαv(y)− Tα(U , x; y)) + lim
x→z

Tα(U , x; y)

= uα(x) = Dαv(x).
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Proof of Theorem 6 The necessary part is obvious. For the other part,
note that Lemma 5 shows the existence of a Ck-extension of u. To show
the remaining part of Theorem 6, observe first that for any α with |α| < k,
x, y ∈ Rn and 0 ≤ s ≤ 1,

|Dαv(y)−
∑

|β|≤k−|α|

Dα+βv(x)
β! (y − x)β|

≤ (k − |α|)
∑

|γ|=k,γ≥α

|y−x|k−|α|

(γ−α)!

∫ 1
0 |Dγv(x+ (y − x)t)−Dγv(x)|dt

≤ (k − |α|)
∑

|γ|=k,γ≥α

|y−x|k−|α|

(γ−α)!

∫ 1
0 CM2,s(U , F )|(y − x)t|sdt

= CM2,s(U , F )|y − x|k+s−|α|,

by Lemma 4 and Taylor’s Theorem with integral remainder.
In order to arrive at estimate (3.4), we need a suitable cut-off function

defined as below. Fix a smooth function φ ∈ C∞(Rn) with suppφ ⊂ B(0, 1),
φ ≥ 0 and

∫
φ = 1. For ε > 0, let φε(x) = ε−nφ(ε−1x). Let ψ = φε/3∗χF2ε/3

where Fr := {x|dist(x, F ) ≤ r} for r > 0. Then ψ ∈ C∞(Rn), ψ ≡ 1 on
Fε/3, ψ ≡ 0 outside Fε, 0 ≤ ψ ≤ 1, and for each α with |α| ≤ k + 1,

∥Dαψ∥∞ ≤ C max
|α|≤k+1

∥Dαφ∥∞

for some constant C = |B(0, 1)|(1 + (3/ε)k+1) = C(n, k)max{1, (1ε )
k+1} =

C(n, k, ε).
(Note that max

|α|≤k+1
∥Dαφ∥∞ is a constant only depending on n and k.)

Define w = vψ, then w ∈ Ck(Rn), w = v in intFε/3 ⊃ F and suppw ⊂
suppψ ⊂ Fε. This implies that Dαw = Dαv = uα on intFε/3 ⊃ F for |α| ≤ k
and Dα ≡ 0 on F c

ε for all α.
Moreover, for any x ∈ Fε\F and |α| ≤ k, by Lemma 2

|Dαw(x)| ≤
∑
β≤α

α!
β!(α−β)! |D

βv(x)||Dα−βψ(x)|

≤
∑
β≤α

α!
β!(α−β)!CMs(U , F )(1 + dist(x, F )k+s−|β|)

≤
∑
β≤α

α!
β!(α−β)!CMs(U , F )(1 + εk+1)

≤ CMs(U , F )

where C is a constant only depends on n, k and ε. ∴ max
|α|≤k

∥Dαw∥∞ ≤

CMs(U , F ).
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Similarly, for x ∈ Fε\F and |α| = k + 1 and 0 ≤ s ≤ 1, by Lemma 3

|Dαw(x)| ≤
∑

β≤α,β ̸=α

α!
β!(α−β)! |D

βv(x)||Dα−βψ(x)|+ |Dαw(x)||ψ(x)|

≤
∑

β≤α,β ̸=α

α!
β!(α−β)!CMs(U , F )(1 + dist(x, F )k+s−|β|)

+CM2,s(U , F )dist(x, F )s−1

≤ CMs(U , F ){
∑

β≤α,β ̸=α

α!
β!(α−β)!(1 + εk+1) + dist(x, F )s−1}

≤ CMs(U , F )dist(x, F )s−1

because 1 = ε1−sεs−1 ≤ (1+ ε)εs−1 ≤ Cdist(x, F )s−1. Thus, for any x ∈ F c

and |α| = k + 1,

|Dαw(x)| ≤ CMs(U , F )dist(x, F )s−1.

Now, we are going to show that for any x, y ∈ Rn and |α| = k,

|Dαw(y)−Dαw(x)| ≤ CMs(U , F )|y − x|s. (3.10)

for some constant C = C(n, k, ε). In case |y − x| ≥ 1,

|Dαw(y)−Dαw(x)| ≤ 2 max
|α|≤k

∥Dαw∥∞ ≤ CMs(U , F ) ≤ CMs(U , F )|y − x|s.

For |y− x| < 1, denote L := {(1− t)x+ ty : t ∈ [0, 1]}. In case dist(L,F ) >
|y − x| > 0, (L ⊂ F c)

|Dαw(y)−Dαw(x)|
≤

∫ 1
0 |∇(Dαw)((1− t)x+ ty)||y − x|dt

≤
∫ 1
0 CMs(U , F )dist((1− t)x+ ty, F )s−1|y − x|dt

≤ CMs(U , F )
∫ 1
0 |y − x|s−1|y − x|dt

= CMs(U , F )|y − x|s.

In case dist(L,F ) ≤ |y−x|, choose w ∈ L and ξ ∈ F such that |w− ξ| =
dist(L,F ) ≤ |y−x|. It is easy to see that |z−ξ| ≤ 2|y−x| < 2 for all z ∈ L.
Since for any |β| ≤ k and z ∈ L,

|Tβ(U , ξ; z)| ≤
∑

|γ|≤k−|β|

Ms(U , F )
γ!

2|γ| ≤ C(n, k)Ms(U , F ),

and
|Tβ(U , ξ; y)− Tβ(U , ξ;x)| ≤ CMs(U , F )|y − x|
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by mean value theorem with the previous estimate. Therefore,

|Dαw(y)−Dαw(x)|
≤

∑
β≤α

α!
β!(α−β)! |D

βv(y)Dα−βψ(y)−Dβv(x)Dα−βψ(x)|

≤
∑
β≤α

α!
β!(α−β)!{|D

βv(y)− Tβ(U , ξ; y)||Dα−βψ(y)|+ |Tβ(U , ξ; y)||Dα−βψ(y)−Dα−βψ(x)|

+|Tβ(U , ξ; y)− Tβ(U , ξ;x)||Dα−βψ(x)|+ |Tβ(U , ξ;x)−Dβv(x)||Dα−βψ(x)|}
≤ CMs(U , F )

∑
β≤α

α!
β!(α−β)!{|y − ξ|k+s−|β| + ∥∇(D(α−β)ψ)∥∞|y − x|

+|y − x|max
|α|≤k

∥Dαψ∥∞ + |x− ξ|k+s−|β| max
|α|≤k

∥Dαψ∥∞}

≤ CMs(U , F )
∑
β≤α

α!
β!(α−β)!{2

k+1|y − x|k+s−|β| + max
|α|≤k+1

∥Dαψ∥∞|y − x|

+|y − x| max
|α|≤k+1

∥Dαψ∥∞ + 2k+1|y − x|k+s−|β| max
|α|≤k+1

∥Dαψ∥∞}

≤ CMs(U , F )|y − x|s.

∴ For any x, y ∈ Rn and |α| = k,
Finally, with (3.10), for any x, y ∈ Rn and |α| < k,

|Dαw(y)−
∑

|β|≤k−|α|

Dα+βw(x)
β! (y − x)β|

≤ (k − |α|)
∑

|γ|=k,γ≥α

|y−x|k−|α|

(γ−α)!

∫ 1
0 |Dγv((1− t)x+ ty)−Dγv(x)|dt

≤ (k − |α|)
∑

|γ|=k,γ≥α

|y−x|k−|α|

(γ−α)!

∫ 1
0 CMs(U , F )|((1− t)x+ ty)− x|sdt

≤ CMs(U , F )|y − x|k+s−|α|.

These give the estimate (3.4).
Remarks:

1. In fact, v can be chosen to be analytic on the union of F c and the set
of isolated points of F by choosing ϕi ’s and φ to be analytic on F c

and the fact that v equals to T (U , x; y) near x for each isolated point
x of F .

2. Each uα in a Ck-jet is continuous on F , hence when F is compact,
M1(U , F ) must be finite.

3. In case that F is a general set, we can similarly define a Ck-jet on F
by assuming (3.2) holds for each x ∈ F , and define a Ck-function on
F in the same way. Then Theorem 6 also holds.
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4. From the proofs of Lemma 3, Lemma and Theorem 6, it follows that
for 0 < s ≤ 1, if for each x ∈ F , M2,s,x,r(U , F ) is finite for some r > 0,
then each Dαv, |α| = k, is locally Hölder continuous with exponent s;
And if

lim
r→0

M2,s,x,r(U , F ) = 0

for each x ∈ F , then

lim
y→x

|Dαv(y)−Dαv(x)|
|y − x|s

= 0

for each x ∈ Rn and |α| = k.

3.2 C∞-functions on F

It is natural now to consider the C∞-functions on a closed subset F of Rn.
Let U = {uα} be a collection of real functions on F , we say that U is a
C∞-jet on F if for each k ∈ N, the subfamily Uk := {uα}|α|≤k is a Ck-jet on
F ; and a function u is a C∞-function on F if there is a C∞-jet U on F such
that u = u0. Note that the definition of C∞-function on F is essentially
following the fact that ∩k∈NC

k(Rn) = C∞(Rn). We are going to show a
similar result for C∞-functions on F as Theorem 1.

Theorem 7. A function u defined on F can be extended to a C∞-function
v on Rn if and only if u is C∞ on F . Moreover, if U is a C∞-jet such
that u = u0, then for any ε > 0, v can be chosen so that Dαv = uα on F
for each multi-index α, suppv contained in the ε-neighborhood of F , and for
each nonnegative integer k

M0({Dαv}|α|≤k,Rn) ≤ Cmax{M0(Uk, F ), ε}

for some constant C = C(n, k, ε).

To prove the theorem, for each i ∈ N, let

ki := sup{k ∈ N : max
|α|≤k

|uα(ξi)| < dist(Qi, F )
−1/2}

and define

v(x) :=

{
u(x) if x ∈ F∑

i∈N ϕi(x)T (Uki , ξ
i;x) if x /∈ F.
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Note that it is possible that ki = ∞, in which case U∞ = U and the power
series T (Uki , ξ

i, x) converges absolutely on Rn by the estimate

∑ |uα(ξi)|
α!

|x−ξi||α| ≤ dist(Qi, F )
−1/2

∑ |x− ξi||α|

α!
= dist(Qi, F )

−1/2en|x−ξi| <∞.

Thus, v ∈ C∞(F c) and for each multi-index α, and for y ∈ F c,

Dαv(y) =
∑
i∈N

∑
β≤α

α!

β!(α− β)!
Dα−βϕi(y)Tβ(Uki , ξ

i; y).

Now, in reference to the proof of Theorem 6, to show that v ∈ C∞(U) and
Dαv = uα on F for each multi-index α, it suffices to show that for each
k ∈ N, x ∈ F and |α| = k − 1,

lim
y → x
y ∈ Fc

|Dαv(y)− Tα(Uk, x; y)|
|y − x|

= 0.

For this, we separate the numerator as follow:

|Dαv(y)− Tα(Uk, x; y)|
= |

∑
i∈N

∑
β≤α

α!
β!(α−β)!D

α−βϕi(y)Tβ(Uki , ξ
i; y)− Tα(Uk, x; y)|

≤
∑

i∈N ϕi(y)|Tα(Uk, ξ
i; y)− Tα(Uk, x; y)|

+|
∑
i∈N

∑
β≤α,β ̸=α

α!
β!(α−β)!D

α−βϕi(y)Tβ(Uk, ξ
i; y)|

+|
∑
i∈N

∑
β≤α

α!
β!(α−β)!D

α−βϕi(y)(Tβ(Uki , ξ
i; y)− Tβ(Uk, ξ

i; y))|

:= I + II + III.

From Proposition 1, we know that

I + II ≤ C(n, k)M2,0,x,4|y−x|(Uk, F )|y − x|.

To estimate III, we need the following lemma which can be proved by in-
duction on the dimension easily.

Lemma 6. Suppose t ≥ 0, l is a nonnegative integer, and α denotes n-
dimensional multi-index. Then

∑
|α|≥l

t|α|

α!
≤ nltlet

l!
+

n−1∑
j=2

(jl+1 − (j − 1)l+1)tl+1e(n+1−j)t

(l + 1)!
+
tl+1ent

(l + 1)!
.
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Moreover, if we further suppose that 0 ≤ t ≤ 1, then

∑
l≤|α|

t|α|

α!
≤ nl+2tlent

l!
.

Since Uk is a Ck-jet on F , each uα is locally bounded on F , therefore,
mk,x := {|uα(y)| : y ∈ B1(x), |α| ≤ k} < ∞ for each x ∈ F . Hence, if
y ∈ F c ∩ Br(x) where r = min{1/5, 7(1 +mk,z)

−2/8}, then for each i ∈ N
such that y ∈ Q∗

i ,

|x− ξi| ≤ 4|y − x| < 1
⇒ |uα(ξi)| ≤ mk,x for all |α| ≤ k

⇒ max
|α|≤k

|uα(ξi)| ≤ mk,x < (8|y − x|/7)−1/2 ≤ dist(Qi, F )
−1/2

⇒ ki ≥ k.

Thus, III is dominated by∑
i∈N,y∈Q∗

i

∑
β≤α,β ̸=α

α!
β!(α−β)!Aα−βdist(y, F )

|β|−|α| ∑
k+1−|β|≤|γ|≤ki−|β|

|uβ+γ(ξi)|
γ! |y − ξi||γ|

≤
∑

i∈N,y∈Q∗
i

∑
β≤α,β ̸=α

α!
β!(α−β)!Aα−βdist(y, F )

|β|−|α| ∑
k+1−|β|≤|γ|≤ki−|β|

1
γ!dist(Qi, F )

−1/2|y − ξi||γ|

≤
∑

i∈N,y∈Q∗
i

∑
β≤α,β ̸=α

α!
β!(α−β)!Aα−βdist(y, F )

|β|−|α| ∑
k+1−|β|≤|γ|

1
γ!(5dist(y, F ))

|γ|−1/2

≤ C
∑

β≤α,β ̸=α

α!
β!(α−β)!dist(y, F )

|β|−|α| ∑
k+1−|β|≤|γ|

1
γ!(5dist(y, F ))

|γ|−1/2

≤ C
∑

β≤α,β ̸=α

α!
β!(α−β)!dist(y, F )

|β|−|α|(5dist(y, F ))−1/2 n
4(5dist(y,F )k+1−|β|e5ndist(y,F )

(k+1−|β|)!

= C(
∑

β≤α,β ̸=α

5k+1−|β|

(k+1−|β|)!)dist(y, F )
3/2

≤ C|y − x|3/2

Therefore,

|Dαv(y)−Tα(Uk,x;y)|
|y−x| ≤ C(M2,0,x,4|y−x|(Uk, F ) + |y − x|1/2)

→ 0 as y → x, y ∈ F c.

Now for 1 > ε > 0, procede similarly as above, we have for |α| = k and
y ∈ Fε2\F ,

|Dαv(y)| ≤ |Dαy(y)− uα(ξ)|+ |uα(ξ)|
≤ Cmax{M0(Uk, F ), ε}.
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Then by Taylor’s Theorem with integral remainder,

M0({Dαv}|α|≤k, Fε2) ≤ Cmax{M0(Uk, F ), ε}.

Finally, by multiplying v by a cut-off function as in the proof of Theorem 6,
we get the extended function desired.

The following corollary is a straightforward application of Theorem 7.

Corollary 2. The intersection of all LC(k)(D), k ∈ N, is the set LC(∞)(D)
consisting of measurable functions u on D which have Lusin property of
order ∞, that is, for each ε > 0, there is a C∞-function v defined on Rn

such that |{x ∈ D : u(x) ̸= v(x)}| < ε.

Proof. It suffices to show that ∩kLC
(k)(D) ⊂ LC(∞)(D). Suppose that u

is a measurable function on D such that for each ε > 0 and k ∈ N, there is
vk ∈ Ck(Rn) satisfying |Ek| := |{x ∈ D : u(x) ̸= vk(x)}| < ε2−k. Note that
all the approximate partial derivatives ∂αu

∂xα := uα of u exist a.e. and, for

k ≥ |α|, uα = ∂αvk
∂xα a.e. on D\(∩kEk) whose complement in D has Lebesgue

measure less than ε. Thus, we can choose a closed subset F of D\(∩kEk)
with |D\F | < ε such that uα = ∂αvk

∂xα on F for each k ≥ |α|. We can conclude

that u ∈ LC(∞)(D) by applying Theorem 7 with the C∞-jet U := {uα}.

4 Proof of Theorem 5

We prove first a lemma which contains the key step in the proof of the
implication (3) ⇒ (2) and will also be used to obtain similar results in the
next section.

Lemma 7. There is a positive constant Cn such that, for each M > 0,

ap lim sup
y→x

|u(y)− Px(y)|
|y − x|γ

< CnM (4.1)

holds true for almost every point x in the set DP
M consisting of the points

x ∈ D satisfying

ap lim sup
yi→xi

|∂αu
∂xα (x+ (yi − xi)ei)− P

(i)
α,x(yi)|

|yi − xi|γ−|α| < M

for all 1 ≤ i ≤ n, |α| ≤
◦
γ, where Px(y) :=

∑
|α|≤

◦
γ

1
α!

∂αu
∂xα (x)(y − x)α.
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Proof. For 1 ≤ i ≤ n and a set A ⊂ Rn, let Ji = {α = (α1, · · · , αn) :

|α| ≤
◦
γ, αi = αi+1 = · · · = αn = 0}, πi,x(A) := {yi ∈ R : x + (yi −

xi)ei ∈ A} , and Di,x := {yi ∈ πi,x(D) : |∂αu
∂xα (x + (yi − xi)ei) − P

(i)
α,x(yi)| ≤

M |yi − xi|γ−|α| ∀α ∈ Ji}. Fix 1 > τ > 0. We will recursively define a
family {Dl1,··· ,li : l1, · · · , li ∈ N, 1 ≤ i ≤ n} of subsets of D as follows.
For l1 ∈ N, let Dl1 = Dτ

l1
be the collection of points x ∈ D satisfying

that |D1,x ∩ [a, b]| ≥ τ(b − a) whenever [a, b] is a closed interval containing
x1 and b − a < l−1

1 . Dl1 is measurable by Lemma 1. Suppose that for
1 ≤ i ≤ n − 1 and l1, · · · , li ∈ N, a measurable subset Dl1,··· ,li of D is
defined, then for li+1 ∈ N, letDl1,··· ,li+1

= Dτ
l1,··· ,li+1

be the set of x ∈ Dl1,··· ,li
such that |Di+1,x ∩ πi+1,x(Dl1,··· ,li)∩ [a, b]| ≥ τ(b− a) whenever xi+1 ∈ [a, b]
and b − a < l−1

i+1. Then each {Dl1,··· ,li}li∈N is an increasing sequence of
measurable sets by Lemma 1, and |DP

M\∪l1,··· ,ln∈NDl1,··· ,ln | = 0. Note that if
y = (y1, · · · , yn) ∈ D satisfies y1 ∈ D1,x(1) and yi ∈ Di,x(i) ∩πi,x(i)(Dl1,··· ,li−1

)
for each 2 ≤ i ≤ n, then

|u(y)− Px(y)|
≤

∑n
i=1

∑
α∈Ji

|∂αu
∂xα (x(i−1))− P

(i)

α,x(i)(yi)||
(y−x)α

α! |

≤
∑n

i=1

∑
α∈Ji

M |yi − xi|γ−|α| |y−x||α|

α!

≤ (
∑

|α|≤
◦
γ

1
α!)M |y − x|γ

:= C(n,
◦
γ)M |y − x|γ .

where x(i) = (x1, · · · , xi, yi+1, · · · , yn) (note that x(0) = y, x(n) = x, and
x(i)+(yi−xi)ei = x(i−1)). Thus, for each x ∈ Dl1,··· ,ln and any rectangle R =
[a1, b1]× · · · × [an, bn] containing x with max1≤i≤n(bi − ai) < min1≤i≤n l

−1
i ,

|{y ∈ DP
M : |u(y)− Px(y)| ≤ C(n,

◦
γ)M |y − x|γ} ∩R|

≥
∫
D

n,x(n)∩πn,x(n) (Dl1,··· ,ln−1
)∩[an,bn] · · ·

∫
D

2,x(2)
∩π

2,x(2)
(Dl1

)∩[a2,b2]
∫
D

1,x(1)
∩[a1,b1] dy1dy2 · · · dyn

≥ τn(bn − an) · · · (b1 − a1)
= τn|R|,

since yi ∈ πi,x(i)(Dl1,··· ,li−1
) implies x(i−1) ∈ Dl1,··· ,li−1

. Hence for each x

belonging ∩t∈N ∪l1,··· ,ln∈N D
1−t−1

l1,··· ,ln , we have

ap lim sup
y→x

|u(y)− u(x)|
|y − x|γ

≤ C(n,
◦
γ)M < enM := CnM.

Thus (4.1) holds a.e., because the complement in DP
M of ∩t∈N ∪l1,··· ,ln∈N

D1−t−1

l1,··· ,ln is a null set.
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We shall need the following lemma given by De Giorgi in [2].

Lemma 8 ([2]). Let σ be a positive real number less than or equal the volume
of unit ball in Rn. Then there exists a constant C depending only on n, k
and σ such that for each x ∈ Rn, r > 0 and any measurable set E ⊂ Br(x)
with |E| ≥ σrn, the inequality

|Dαp(x)| ≤ C

rn+|α|

∫
E
|p(y)|dy

holds for each polynomial p with deg p ≤ k and each muilti-index α.

We are going to prove Theorem 5 by showing that the sequence of impli-
cations (1) ⇒ (3) ⇒ (2) ⇒ (1) holds. The implication (1)⇒(3) follows from
the fact that a measurable set has linear density 1 in each direction ei at
almost all points of the set, and the following formula of Taylor remainder

of a C
◦
γ function v:

v(y)−
∑

|α|≤
◦
γ

1
α!

∂αv
∂xα (x)(y − x)α

=
◦
γ
∑

|α|=
◦
γ

(y−x)α

α!

∫ 1
0 (1− t)

◦
γ−1

(
∂αv
∂xα (x+ (y − x)t)− ∂αv

∂xα (x)
)
dt.

The implication (3)⇒(2) follows from Lemma 7, if one notes that the
set of points in D where (1.3) holds can be expressed as the following union
of sets:

∪M∈N{x ∈ D : ap lim sup
y→x

|u(y)− Px(y)|
|y − x|γ

< CnM},

and the set of points in D where u is partially approximately Lipschitz
continuous of order γ is also the union of DP

M over M ∈ N.
For the implication (2) ⇒ (1), we write Px(y) =

∑
|α|≤

◦
γ

uα(x)
α! (y − x)α

and fix ε > 0. There exists a sequence of compact sets {Kj}j∈N in Rn

such that |Rn\ ∪j∈N Kj | < ε and dist(Kj0 ,∪j ̸=j0Kl) > 0 for each j0 ∈ N.
Thus by considering the intersection of Kj and D for each j ∈ N, we may
assume that |D| < ∞. There exists M > 0 such that the complement of

{x ∈ D : ap lim supy→x
|u(y)−Px(y)|

|y−x|γ < M} in D has measure strictly less than

ε. Let σ be the ratio of |B1(0)∩B1(e1)| to |B1(0)| and τ = (2+σ)/4 ∈ (0, 1)
(note that σ is a number depending only on n). For l ∈ N, let

Dl := {x ∈ D : |Ex ∩Br(x)| ≥ τ |Br(x)| ∀ 0 < r < 1/l},

where Ex := {y ∈ D : |u(y) − Px(y)| ≤ M |y − x|γ}. Dl is an increasing
sequence of measurable subsets of D by Lemma 1, and |D\ ∪l∈N Dl| = 0.
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We can choose l0 ∈ N and a compact subset K of Dl0 such that |D\K| < ε.
For x1, x2 ∈ K with 0 < r := |x1 − x2| < 1/l0, consider the set E :=
Ex1 ∩Br(x1)∩Ex2 ∩Br(x2), then |E| ≥ (1−σ/2)|Br(0)|. By Lemma 8 with

k =
◦
γ and p = Px1 − Px2 ,

|uα(x1)−
∑

|β|≤k−|α|
uα+β(x2)

β! (x2 − x1)
β|

= |Dα
y (Px1(y)− Px2(y))|y=x1 |

≤ C
rn+|α|

∫
E |Px1(y)− Px2(y)|dy

≤ C
rn+|α| {

∫
E |Px1(y)− u(y)|dy +

∫
E |u(y)− Px2(y)|dy}

≤ CM
rn+|α| {

∫
Br(x1)

|x1 − y|γdy +
∫
Br(x2)

|y − x2|γdy}
≤ CM |x1 − x2|γ−|α|,

for each α with |α| ≤
◦
γ. Since K is compact, we can cover K by finitely

many balls with radius l−1
0 , hence there is M̃ > 0 such that |uα(x1) −∑

|β|≤k−|α|
uα+β(x2)

β! (x2−x1)β| ≤ M̃ |x1−x2|γ−|α| for any x1, x2 ∈ K. (2)⇒(1)
then follows by Whitney’s Extension Theorem, concluding the proof of The-
orem 5.

Remarks.

1. Since the multi-indices α used in the proof of Lemma 7 are those in
∪1≤i≤nJi, it follows that (2) holds under weaker assumptions than
those stated in (3). For example, when 1 < γ ≤ 2, (1.3) holds a.e.
on D if and only if, for almost every x ∈ D, the approximate partial
derivative uei :=

∂u
∂xi

exists for 1 ≤ i ≤ n, and satisfies

ap lim sup
yi→xi

|uei(x+ (yj − xj)ej)− uei(x)|
|yj − xj |γ−1

<∞

for all 1 ≤ i < j ≤ n, and u satisfies

ap lim sup
yi→xi

|u(x+ (yi − xi)ei)− u(x)− uei(x)(yi − xi)|
|yi − xi|γ

<∞

for each 1 ≤ i ≤ n. In general, (1.3) holds a.e. on D if and only if
there is a permutation ϕ of {1, 2, · · · , n} such that for a.e. x ∈ D,

(1) for each multi-index α = (α1, α2, · · · , αn) with |α| ≤
◦
γ, the ap-

proximate partial derivative

uα :=
∂αϕ(n)

∂x
αϕ(n)

ϕ(n)

(
∂αϕ(n−1)

∂x
αϕ(n−1)

ϕ(n−1)

(
· · ·

(
∂αϕ(1)u

∂x
αϕ(1)

ϕ(1)

)))
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exists; and

(2) for each |α| ≤
◦
γ with αϕ(n) = 0,

ap lim sup
yi→xi

|uα(x+ (yi − xi)ei)− P
(i)
α,x(yi)|

|yi − xi|γ−|α| <∞ (4.2)

holds for i = ϕ(j) with αϕ(j) = αϕ(j+1) = · · · = αϕ(n) = 0.

2. In the implication (2)⇒(1), the function v for (1) can be chosen such
that

Mµ(v) ≤ CMµ({uα},K),

where k =
◦
γ in the definition of Mµ(v) and Mµ({uα},K).

For a measurable function u on D, set ωu(λ) = |{x ∈ D : |u(x)| > λ}|
for λ ≥ 0 and let M0(D) be the class of measurable functions u on D such
that limλ→∞ ωu(λ) = 0. If u ∈M0(D), the nonincreasing rearrangement u∗

of u is defined as u∗(t) = sup{λ : ωu(λ) > t}. With the notations defined
above, we have the following corollary of Theorem 5.

Corollary 3. Suppose that u ∈ Lipap(γ,D) with the property that both u and

L(x) := ap lim supy→x
|u(y)−Px(y)|

|y−x|γ belong to M0(D). Then for each ε > 0,

there is v ∈ C
◦
γ,µ(Rn) whose norm is dominated by Cu∗(ε/3)∨L∗(ε/3) such

that
|{x ∈ D : u(x) ̸= v(x)}| < ε,

where C is a constant depending only on γ and n.

Proof. For each ε > 0, let D̃ = {x ∈ D : u(x) ≤ u∗(ε/3), L(x) ≤ L∗(ε/3)}.
Then |D\D̃| ≤ 2ε/3. The corollary follows by applying Theorem 5 on D̃
and remark 2 above.

5 Applications of Theorem 5 and Some Remarks

We now formulate a generalization of a theorem of Currier [3] which is a
direct application of Theorem 5.

Theorem 8. Suppose that u is a measurable function defined on a measur-
able set D ⊂ R2 whose approximate partial derivatives ∂u

∂x1
, ∂u

∂x2
exist a.e.
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on D. If for i = 1, 2,

ap lim sup
yi→xi

|u(x+ (yi − xi)ei)− u(x)− ∂u
∂xi

(x)(yi − xi)|
|yi − xi|2

<∞, (5.1)

holds, and

ap lim sup
y2→x2

| ∂u∂x1
(x1, y2)− ∂u

∂x1
(x)|

|y2 − x2|
<∞, (5.2)

a.e. on D, then all the second order approximate partial derivatives of u
exist and ∂

∂x1
( ∂u
∂x2

) = ∂
∂x2

( ∂u
∂x1

) a.e. on D.

Suppose now that u is a function defined on a subset of R2 containing
a segment L := (x1 − r, x1 + r) × {x2} for some r > 0. If the classical

first-order partial derivative ∂u
∂x1

exists at each point in L and ∂2u
∂x2

1
exists at

x = (x1, x2), then there exists 0 < δ < r such that∣∣∣∣ ∂u∂x1 (y1, x2)− ∂u

∂x1
(x)− ∂2u

∂x21
(x)(y1 − x1)

∣∣∣∣ < |y1 − x1|

whenever |y1 − x1| ≤ δ. Thus, ∂u
∂x1

(·, x2) is bounded on I := [x1 − δ, x1 + δ],
and hence u(·, x2) is absolutely continuous on I. Therefore,

|u(y1, x2)− u(x)− ∂u
∂x1

(x)(y1 − x1)|
≤ |

∫ y1
x1

( ∂u
∂x1

(t, x2)− ∂u
∂x1

(x)− ∂2u
∂x2

1
(x)(t− x1))dt|+ 1

2 |
∂2u
∂x2

1
(x)||y1 − x1|2

≤ 1
2(1 + |∂2u

∂x2
1
(x)|)|y1 − x1|2

for each |y1 − x1| < δ. That is, (5.1) holds true at x for i = 1. Similar
results also hold for i = 2. Thus, the following corollary holds by Theorem 8
(note that (5.2) holds by the existence of the approximate partial derivative

∂2u
∂x2∂x1

).

Corollary 4. Let u(x1, x2) be defined on an open subset O of R2, and let
the first-order partial derivatives ∂u

∂x1
and ∂u

∂x2
exist on O. Let D be the mea-

surable subset of O on which the second-order partial derivatives ∂2u
∂x2

1
, ∂2u

∂x2
2
,

and the approximate partial derivative ∂2u
∂x2∂x1

exist. Then the approximate

partial derivative ∂2u
∂x1∂x2

exists and equals ∂2u
∂x2∂x1

almost everywhere on D.

Clearly, Corollary 4 includes the following theorem of Currier [3] as a
special case.
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Theorem 9 ([3]). Let u(x1, x2) be defined on an open subset O of R2,
and let the first partial derivatives ∂u

∂x1
and ∂u

∂x2
exist on O. Let D be a

measurable subset of O on which the four second-order partial derivatives
∂2u
∂x2

1
, ∂2u

∂x1∂x2
, ∂2u

∂x2∂x1
, ∂2u

∂x2
2
exist almost everywhere. Then ∂2u

∂x1∂x2
= ∂2u

∂x2∂x1

almost everywhere on D.

Theorem 5 is now applied to prove a generalization of Theorem 4 in [16].
First we quote a Lemma from [16].

Lemma 9. Let ϕ be a function defined on an interval I ⊂ R whose deriva-
tives exist up to order k and its k-th order derivative is bounded on I. Then

ϕ(t2) =

k∑
l=0

1

l!

dlϕ(t1)

dtl
(t2− t1)l+

1

(k − 1)!

∫ t2

t1

(t2− t)k−1(
dkϕ(t)

dtk
− dkϕ(t1)

dtk
)dt

for t1, t2 ∈ I.

The following corollary is a generalization of Theorem 4 in [16] which
is used to prove (1)⇒(2) and (3)⇒(2) by induction on k in [6] and [8]
respectively.

Theorem 10. Suppose that O is an open set in Rn, and u is a function

defined on O such that the partial derivatives ∂αu
∂xα exist up to order

◦
γ at

every point of O and for almost every x ∈ O,

Mα,i(x) := lim sup
yi⇒xi

|∂αu
∂xα (x+ (yi − xi)ei)− ∂αu

∂xα (x)|
|yi − xi|γ−|α| <∞ (5.3)

for each |α| =
◦
γ and 1 ≤ i ≤ n. Then u ∈ LC(γ)(O).

Proof. According to Theorem 5, it is sufficient to prove that (1.4) |α| ≤
◦
γ

for almost every point in O. Suppose x is a point in O at which (5.3)

holds. Then, for each |α| ≤
◦
γ and 1 ≤ i ≤ n, there exists δ > 0 such that

x+ (yi − xi)ei ∈ O and∣∣∣∣∣∣∂
α+(

◦
γ−|α|)eiu

∂xα+(
◦
γ−|α|)ei

(x+ (yi − xi)ei)−
∂α+(

◦
γ−|α|)eiu

∂xα+(
◦
γ−|α|)ei

(x)

∣∣∣∣∣∣ < Mα,i(x) + 1

whenever |yi − xi| < δ. Thus, ∂αu
∂xα (x + (yi − xi)ei) is a function on yi ∈

(xi − δ, xi + δ) := I whose derivatives exist up to order
◦
γ−|α| and its
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(
◦
γ−|α|)-th order derivative is bounded on I. By Lemma 9,

|∂αu
∂xα (x+ (yi − xi)ei)− P

(i)
α,x(yi)|

= 1

(
◦
γ−|α|−1)!

|
∫ yi
xi
(yi − t)

◦
γ−|α|−1(∂

α+(
◦
γ −|α|)eiu

∂xα+(
◦
γ −|α|)ei

(x+ (t− xi)ei)− ∂α+(
◦
γ −|α|)eiu

∂xα+(
◦
γ −|α|)ei

(x))dt|

≤ 1

(
◦
γ−|α|−1)!

|
∫ yi
xi

|yi − t|
◦
γ−|α|−1(Mα,i(x) + 1)dt|

=
Mα,i(x)+1

(
◦
γ−|α|)!

|yi − xi|
◦
γ−|α|

for |yi − xi| < δ. That is, (1.4) holds at x. Thus u is partially approxi-
mately Lipschitz continuous of order γ at almost every point of O, hence
u ∈ LC(γ)(O).

The following corollary is an application of Theorem 10 and Corollary
3, and it will be used to deal with the case when γ is a positive integer (cf.
[5]).

Corollary 5. A Ck,1-function defined on an open set O ⊂ Rn belongs to
LC(k+1)(O). Moreover, for each ε > 0, there is a Ck+1-function v on Rn

such that |{x ∈ O : u(x) ̸= v(x)}| < ε and

∥v∥Ck+1(Rn) ≤ C∥u∥Ck,1(O).

for some constant C = C(n, k).

Lien and Liu [5] provided a sufficient condition for a measurable function
u to have Lusin property of order γ. The result can be improved slightly by
applying Corollary 4. We start the discussion by introducing some defini-
tions from [5]. Suppose that O is an open set in Rn satisfying A-condition,
that is, there is a constant A > 0 such that |O(x, r)| ≥ Arn for all x ∈ O
and 0 < r ≤ 1 where O(x, r) := O ∩ B(x, r). The space of all measurable
function u on O which is integrable on each bounded measurable subset of
O will be denoted by L1

b(O).

Definition 4. Let γ to be a positive integer, and Lγ(O) be class of all those
functions u ∈ L1

b(O) such that

1. for almost all x ∈ O, there is a polynomial Tx(·) with degree ≤ γ
satisfying

[u]γ(x) := sup
0<r≤1

r−γ 1

O(x, r)

∫
O(x,r)

|u(y)− Tx(y)|dy < +∞;
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2. if we set

σu(x) := [u]γ(x) +

∫
O(x,1)

|u(y)|dy,

then σu is in M0(O).

Suppose u ∈ Lγ(O). For those x ∈ O at which 1 holds, denote

Tx(y) :=
∑
|α|≤γ

uα(x)

α!
(y − x)α.

Then for each |α| ≤ γ − 1, uα is uniquely defined and measurable. To see
this, we need the following lemma of Calderon and Zygmund.

Lemma 10. There exists ϕ ∈ C∞
0 (Rn) with suppϕ ⊂ B(0, 1) such that for

every polynomial P on Rn of degree ≤ γ and every ε > 0, ϕε ∗P = P , where
ϕε(x) := ε−n(ε−1x).

Fix x ∈ O, uε := ϕε ∗ u is defined for sufficiently small ε > 0. Then we
have

Dαuε(x) = DαTx(x)+

∫
ε−n−|α|Dαϕ(

x− y

ε
)(u(y)−(Tx(y)−

∑
|α|=γ

uα(x)

α!
(y−x)α))dy.

The above integral is dominated by

Cε−n−|α| ∫
B(x,ε){|u(y)− Tx(y)|+

∑
|α|=γ

|uα(x)|
α! |y − x|γ}dy

≤ Cε−n−|α|{[u]γ(x)|B(x, ε)|εγ +
∫
B(x,ε)(

∑
|α|=γ

1
α!) max

|α|=γ
|uα(x)|εγdy}

≤ Cεγ−|α| → 0 as ε→ 0 for |α| < γ.

This shows that uα(x) = DαTx(x) is the limits of Dαuε(x) for |α| < γ, hence
is measurable and uniquely determined. In particular, u(x) = Tx(x) at each
Lebesgue point x of u, i.e., u = Tx = u0 a.e. on O.

Note that from the definition of Lγ(O), uα, |α| = γ, is not necessary
measurable nor uniquely determined, for by adding a finite function on the
highest coefficients, the assumption will not be violated. From now on , we
suppose further that uα is measurable for all |α| = γ. Then [u]γ is approx-
imately lower semi-continuous at x ∈ O which is a point of approximate
continuity of all uα’s, therefore, [u]γ is measurable by a theorem of Kamke.
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Theorem 11. There exists a constant C > 0 depending only on n, A, and
γ such that for all u ∈ Lγ(O) whose uα are measurable for all |α| = γ, and
ε > 0, there is a closed set Fε ⊂ O and vε ∈ Cγ(Rn) such that

1. Ln(O\Fε) < 2ε,

2. vε ≡ u, and Dαvε = uα for |α| ≤ γ on Fε, and

max{M1,vε ,M2,0,ε} ≤ Cσ∗u(ε).

Proof. Fix ε > 0, let

Oε := {x ∈ O : σu(x) ≤ σ∗u(ε)}.

Then Ln(O\Oε) ≤ ε. Choose a closed set F̃ε ⊂ Oε so that

Ln(O\F̃ε) < 2ε,

and u = Tx = u0 on Fε.

1. For x ∈ F̃ε and |α| ≤ γ, by Lemma 8, for some constant C =
C(n,A, γ),

|DαTx(x)| ≤ C
∫
O(x,1) |Tx(y)|dy

≤ C{[u]γ(x) +
∫
O(x,1) |u(y)|dy}

= Cσu(x) ≤ Cσ∗u(ε).

i.e., M1 ≤ Cσ∗u(ε).

2. For x, y ∈ F̃ε and |α| ≤ γ. If |x− y| < 1
2 , we have

|uα(y)−Dα(Tx(y))|
= |Dα

z (Ty(z)− Tx(z))|z=y|
≤ C

|y−x|n+|α|

∫
O(y,|y−x|) |Ty(z)− Tx(z)|dy

≤ C
|y−x|n+|α| {

∫
O(y,|y−x|) |Ty(z)− u(z)|dz +

∫
O(y,|y−x|) |u(z)− Tx(z)|dy}

≤ C
|y−x|n+|α| {

∫
O(y,|y−x|) |Ty(z)− u(z)|dz +

∫
O(x,2|y−x|) |u(z)− Tx(z)|dy}

≤ C
|y−x|n+|α| {[u]γ(y)|y − x|γLn(O(y, |y − x|)) + [u]γ(x)(2|y − x|)γLn(O(x, 2|y − x|))}

≤ C
|y−x|n+|α| {[u]γ(y)|y − x|γLn(B(y, |y − x|)) + [u]γ(x)(2|y − x|)γLn(B(x, 2|y − x|))}

≤ C|y − x|γ−|α|{[u]γ(y) + [u]γ(x)}
≤ C|y − x|γ−|α|σ∗u(ε).
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On the other hand, if |y − x| ≥ 1
2 ,

|uα(y)−Dα(Tx(y))|
≤ |uα(y)|+

∑
|β|≤γ−|α|

|uα+β(x)|
β! |y − x||β|

≤ σ∗u(ε)(1 +
∑

|β|≤γ−|α|
|y − x||β|)

≤ Cσ∗u(ε)(
|y−x|γ−|α|

|y−x|γ−|α| +
∑

|β|≤γ−|α|

|y−x|γ−|α|

|y−x|γ−|α|−|β| )

≤ Cσ∗u(ε)(2
γ−|α| +

∑
|β|≤γ−|α|

2γ−|α|−|β|)|y − x|γ−|α|

≤ Cσ∗u(ε)|y − x|γ−|α|.

i.e., for each z ∈ Fε and |α| ≤ γ − 1,

lim
x,y→z;x,y∈Fε

|uα −Dα(Tx(y))|
|y − x|γ−1−|α| = 0,

and M2,1 ≤ Cσ∗u(ε).

Thus, u|Fε can be extended to a Cγ−1,1 function ṽε on Rn with

max{M1,ṽε ,M2,1,ṽε} ≤ Cσ∗u(x).

Finally, apply Corollary 4 to find vε and F̂ε with Ln(R\F̂ε) < 2t−Ln(O\F̃ε)
and the estimate

max{M1,vε ,M2,1,vε} ≤ Cσ∗u(x).

Simply let Fε = F̃ε
∩
F̂ε to conclude the proof.

Finally, we give some remarks to conclude this thesis.

1. By modifying slightly the proof of Theorem 5, one can see that the
following statements are equivalent:

(1) For each ε > 0, there is a function v ∈ Cγ
loc(R

n) with

lim
y→x

| ∂αv
∂xα (y)− ∂αv

∂xα (x)|
|y − x|µ

= 0

for all x ∈ Rn and |α| =
◦
γ such that |{x ∈ D : u(x) ̸= v(x)}| < ε.
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(2) For almost all point x ∈ D, there exists a polynomial Px centered

at x with degree ≤
◦
γ such that

ap lim
y→x

|u(y)− Px(y)|
|y − x|γ

= 0. (5.4)

(3) For almost all point x ∈ D, the unbiased approximate partial

derivatives of u up to order
◦
γ exist, and

ap lim
yi→xi

|∂αu
∂xα (x+ (yi − xi)ei)− P

(i)
α,x(yi)|

|yi − xi|γ−|α| = 0 (5.5)

for each 1 ≤ i ≤ n and |α| ≤
◦
γ, where

P (i)
α,x(yi) =

◦
γ−|α|∑
l=0

1

l!

∂α+leiu

∂xli∂x
α
(x)(yi − xi)

l.

To illustrate the modification of the proof, we show (3)⇒(2) as follows.
Since

{x ∈ D : (5.4) holds at x} = ∪m∈N{x ∈ D : ap lim
y→x

|u(y)− Px(y)|
|y − x|γ

< Cn/m},

and

{x ∈ D : (5.5) holds at x ∀1 ≤ i ≤ n, |α| ≤
◦
γ} = ∪m∈ND

P
1/m,

the implication follows from Lemma 7, where Cn, Px(y), and D
P
1/m are

as in the lemma.

2. As we have indicated that statement (2) in Theorem 4 can be replaced
by statement (2)′ in the remark following the theorem, it is easy to see
that Theorem 5 reduces to Theorem 4 when γ = k, hence Theorem 5
is a generalization of Theorem 4 as we claim.

3. Ziemer proved a Rademacher type theorem (Theorem 3.8.1 in [17]) in
Lp-context (see also [7]), the equivalence of (1) and (3) in Theorem
4 is the corresponding Rademacher type theorem in the context of
approximate limit and approximate supremum.
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