請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6719
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉豐哲 | |
dc.contributor.author | Chun-Liang Lin | en |
dc.contributor.author | 林俊良 | zh_TW |
dc.date.accessioned | 2021-05-17T09:16:51Z | - |
dc.date.available | 2012-08-10 | |
dc.date.available | 2021-05-17T09:16:51Z | - |
dc.date.copyright | 2012-08-10 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-30 | |
dc.identifier.citation | [1] A. P. Calderon, A. Zygmund, Local Properties of Solutions of Elliptic
Partial Differential Equations, Studia Math. 20 (1961), 171-225. [2] S. Campanato, Propriet’a di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa 18 (1964), 137-160. [3] A. E. Currier, Proof of the fundamental theorems on second order cross partial derivatives, Trans. Amer. Math. Soc. 35 (1933), 245-253. [4] H. Federer, Geometric Measure Theory, Springer-Verlag, 1969. [5] W. C. Lien and F. C. Liu, Maximal mean estimates of Taylor remainder, Bull. Inst. Math. Acad. Sinica, 29(2001), 79-97. [6] F. C. Liu, On a theorem of Whitney, Bull. Inst. Math. Acad. Sinica 1 (1973), 63-70. [7] F. C. Liu, A Localized Lusin Theorem and a Rademacher Type Theorem, Bull. Inst. Math. Acad. Sinica Vol. 3, No. 2 (2008), 243-253 [8] F. C. Liu, W. S. Tai, Approximate Taylor polynomials and differentiation of functions, Topol. Methods Nonlinear Anal. 3 (1994), 189-196. [9] F. C. Liu, W. S. Tai, Maximal Mean Steepness and Lusin Type Properties, Ricerche di Matem., XLIII(1994), 365-384. [10] F. C. Liu, W. S. Tai, Lusin Properties and Interpolation of Sobolev Spaces, Topo. Meth. Nonlin. Ana. Vol. 9 (1997), 163-177. [11] B. Malgrange, Ideals of differentiable functions, Oxford Univ. Press, 1966. [12] S. Saks. Theory of the integral, Second Edition, Monografje Matemacyczne, Warszawalwow, 1937. [13] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970. [14] W. Stepanoff, Sur les conditions de l’existence de la diff’erentielle totale, Rec. Math. Soc. Math. Moscou 32 (1925) 511-526. [15] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89. [16] H. Whitney, On totally differentiable and smooth functions, Pacific J. Math. 1 (1951), 143-159. [17] W. P. Ziemer, Weakly Differentiable Functions, Springer-Verlag, 1989. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6719 | - |
dc.description.abstract | 依循W. Stepanoff、H Whitney及H. Federer的工作,我們研究函數與各種弱性微分有關的量度性質。綜合他們的工作,可知以下四個敘述的等價性:
(1)u在D上幾乎處處幾近可微(approximately differentiable); (2)給定ε>0,存在一個定義在R^n上的連續可微函數v,使得u與v相異點所成的集合的測度小於ε; (3)u的一次差分的幾近上極限(approximate limsup)在D上幾乎處處有限; (4)u的一階幾近偏導數在D上幾乎處處存在。 接著,W. S. Tai與F. C. Liu把這些結果推廣到更高階(非負整數)的弱性微分性質。我們更進一步地將其推廣到一般階(不限定為非負整數),證明了以下定理: 主要定理. 對γ>0,以下敘述是等價的: (1)u在D上擁有γ階Lusin性質; (2)u在D上幾乎處處γ階Lipschitz連續; (3)u在D上幾乎處處γ階偏Lipschitz連續。 對於證明主要定理的重要工具─Whitney擴張定理,我們也做了仔細的研究,附加上範數的估計,將定理重新敘述成更容易應用的型式。 | zh_TW |
dc.description.abstract | Metrical properties of measurable functions in terms of various forms of weak differentiability are studied along a line suggested by works of W. Stepanoff, H. Whitney, and H. Federer which can be summarily described as stating that the following four statements are equivalent:
(1) u is approximately differentiable a.e. on D. (2) Given epsilon > 0, there is a C^1 function v on R^n such that |{x in D : u(x) does not equal v(x)}| < epsilon. (3) ap-limsup_{y tends to x}|u(y)-u(x)|/|y-x|< ∞ for almost all x ∈ D. (4) First order approximate partial derivatives of u exist a.e. on D. W. S. Tai and F. C. Liu then generalize the results to the situation involving higher (integral) order of weak differentiability. For a further generalization to fractional order, we prove the following theorem: Main Theorem. For gamma > 0, the following statements are equivalent: (1) u has Lusin property of order gamma on D. (2) u is approximately Lipschitz continuous of order gamma at almost every point of D. (3) u is partially approximately Lipschitz continuous of order gamma at almost all point of D. Whitney’s Extension Theorem, which is a main tool for the proof of the Main Theorem, is also given a detailed consideration and reformulated in a form with appropriate norm estimates. This form seems to be of a final touch and can be applied more effectively. | en |
dc.description.provenance | Made available in DSpace on 2021-05-17T09:16:51Z (GMT). No. of bitstreams: 1 ntu-101-D95221008-1.pdf: 575725 bytes, checksum: 702e54d86c7237b366065eb38e9ce1e5 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 口試委員會審定書……………………………………………………………………………………………………………1
中文摘要……………………………………………………………………………………………………………………………2 英文摘要……………………………………………………………………………………………………………………………3 1. Introduction………………………………………………………………………………………………………4 2. Measurability of Sets..…………………………………………………………………………9 3. Whitney’s Extension Theorem with Norm Estimates………11 3.1 Extenion of C^k-functions on F……………………………………………………13 3.2 C^∞-functions on F……………………………………………………………………………………22 4. Proof of Theorem 5……………………………………………………………………………………25 5. Applications of Theorem 5 and Some Remarks……………………29 參考文獻…………………………………………………………………………………………………………………………37 | |
dc.language.iso | en | |
dc.title | 各式弱性微分性質與函數的量度性質 | zh_TW |
dc.title | Metrical properties of functions in terms of various forms of weak differentiability | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 劉太平,張清煇,郭忠勝,謝南瑞,陳俊全 | |
dc.subject.keyword | 弱微分,弱導數, | zh_TW |
dc.subject.keyword | approximate limsup,approximate limit,approximately differentiable,approximate derivative,Lipschitz continuous,Holder continuous, | en |
dc.relation.page | 38 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2012-07-31 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf | 562.23 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。