Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6719
標題: 各式弱性微分性質與函數的量度性質
Metrical properties of functions in terms of various forms of weak differentiability
作者: Chun-Liang Lin
林俊良
指導教授: 劉豐哲
關鍵字: 弱微分,弱導數,
approximate limsup,approximate limit,approximately differentiable,approximate derivative,Lipschitz continuous,Holder continuous,
出版年 : 2012
學位: 博士
摘要: 依循W. Stepanoff、H Whitney及H. Federer的工作,我們研究函數與各種弱性微分有關的量度性質。綜合他們的工作,可知以下四個敘述的等價性:
(1)u在D上幾乎處處幾近可微(approximately differentiable);
(2)給定ε>0,存在一個定義在R^n上的連續可微函數v,使得u與v相異點所成的集合的測度小於ε;
(3)u的一次差分的幾近上極限(approximate limsup)在D上幾乎處處有限;
(4)u的一階幾近偏導數在D上幾乎處處存在。
接著,W. S. Tai與F. C. Liu把這些結果推廣到更高階(非負整數)的弱性微分性質。我們更進一步地將其推廣到一般階(不限定為非負整數),證明了以下定理:
主要定理. 對γ>0,以下敘述是等價的:
(1)u在D上擁有γ階Lusin性質;
(2)u在D上幾乎處處γ階Lipschitz連續;
(3)u在D上幾乎處處γ階偏Lipschitz連續。
對於證明主要定理的重要工具─Whitney擴張定理,我們也做了仔細的研究,附加上範數的估計,將定理重新敘述成更容易應用的型式。
Metrical properties of measurable functions in terms of various forms of weak differentiability are studied along a line suggested by works of W. Stepanoff, H. Whitney, and H. Federer which can be summarily described as stating that the following four statements are equivalent:
(1) u is approximately differentiable a.e. on D.
(2) Given epsilon > 0, there is a C^1 function v on R^n such that |{x in D : u(x) does not equal v(x)}| < epsilon.
(3) ap-limsup_{y tends to x}|u(y)-u(x)|/|y-x|< ∞ for almost all x ∈ D.
(4) First order approximate partial derivatives of u exist a.e. on D.
W. S. Tai and F. C. Liu then generalize the results to the situation involving higher (integral) order of weak differentiability. For a further generalization to fractional order, we prove the following theorem:
Main Theorem. For gamma > 0, the following statements are equivalent:
(1) u has Lusin property of order gamma on D.
(2) u is approximately Lipschitz continuous of order gamma
at almost every point of D.
(3) u is partially approximately Lipschitz continuous of order gamma at almost all point of D.
Whitney’s Extension Theorem, which is a main tool for the proof of the Main Theorem, is also given a detailed consideration and reformulated in a form with appropriate norm estimates. This form seems to be of a final touch and can be applied more effectively.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6719
全文授權: 同意授權(全球公開)
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf562.23 kBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved