Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54155
Title: 半直積群上的Noether問題
Noether's Problem on Semidirect Product Group
Authors: Shang Huang
黃玄
Advisor: 朱樺(Huah Chu)
Keyword: Noether問題,有理化問題,逆Galois問題,半直積群,乘法群作用,
Rationality problem,The inverse Galois problem,Semidirect product group,Multiplicative group action,
Publication Year : 2015
Degree: 碩士
Abstract: 令K為一體,G為有限群。
定義群$G$作用於(acts on)有理函數體L = K(x_{sigma} : sigma in G)上,
此處 au cdot x_{sigma} = x_{ ausigma}, forall au, sigma in G。
令K(G) = L^{G} = { frac{f}{g} in L : sigma(frac{f}{g}) = frac{f}{g}, forall sigma in G }
為此作用(action)的固定體(fixed field)。
Noether問題就是要決定K(G)在K之上是否為有理(rational)的(=purely transcendental, 純超越的。)
考慮兩循環群(cyclic group)C_m, C_n的半直積群G = C_m
times C_n.
目前我們已知若mathbb{Z}[zeta_n]為唯一分解整環(unique factorization domain),
且K包含足夠的單位根,則K(G)是有理的。
但尚未有人給出一對質數p, q的反例,使得mathbb{C}(C_p
times C_q)為非有理的。
本文給出K(C_m
times C_n)為有理的必要條件。
Let $K$ be a field, $G$ a finite group.
Let $G$ act on function field $L = K(x_{sigma} : sigma in G)$ by $ au cdot x_{sigma} = x_{ ausigma}$ for any $sigma, au in G$.
Denote the fixed field of the action by $K(G) = L^{G} = { frac{f}{g} in L : sigma(frac{f}{g}) = frac{f}{g}, forall sigma in G }$.
Noether's problem asks whether $K(G)$ is rational (purely transcendental) over $K$.
It is known that if $G = C_m
times C_n is semidirect product of cyclic groups C_m, C_n with mathbb{Z}[zeta_n] a unique factorization domain, and K contains an eth primitive root of unity, where e is the exponent of G. Then K(G) is rational over K.
But it is still an open question whether there exists prime pair p, q such that mathbb{C}(C_p
times C_q) is not rational over mathbb{C}.
In this paper, we show that, under some conditions, K(C_m
times C_n) is rational over K.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54155
Fulltext Rights: 有償授權
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-104-1.pdf
  Restricted Access
793.61 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved