Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54155
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱樺(Huah Chu)
dc.contributor.authorShang Huangen
dc.contributor.author黃玄zh_TW
dc.date.accessioned2021-06-16T02:42:20Z-
dc.date.available2016-07-30
dc.date.copyright2015-07-30
dc.date.issued2015
dc.date.submitted2015-07-21
dc.identifier.citation[1] Hamza Ahmad, Mowaffaq Hajja, and Ming chang Kang. Rationality of some pro- jective linear actions. Journal of Algebra, 228(2):643–658, 06 2000.
[2] Fedor A. Bogomolov. The brauer group of quotient spaces by linear group actions. Mathematics of the USSR-Izvestiya, 30(3):455, 1988.
[3] HuahChuandMing-changKang.Rationalityofp-groupactions.JournalofAlgebra, 237(2):673–690, 2001.
[4] Huah Chu, Shou-Jen Hu, Ming-chang Kang, and Yu G. Prokhorov. Noether’s prob- lem for groups of order 32. Journal of Algebra, 320(7):3022–3035, 2008.
[5] Huah Chu, Shou-Jen Hu, Ming-chang Kang, and Boris E Kunyavskii. Noetherﱛs problem and the unramified brauer group for groups of order 64. International Math- ematics Research Notices, page rnp217, 2009.
[6] Huah Chu, Akinari Hoshi, Shou-Jen Hu, and Ming-chang Kang. Noether’s problem for groups of order 243. Journal of Algebra, 2015.
[7] Ernst Fischer. Die isomorphie der invariantenkorper der endlichen abelschen grup- pen lineaerer transformatioen. Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-Physikalische Klasse, 1915:77–80, 1915.
[8] Frank D. Grosshans, Gian-Carlo Rota, and Joel A. Stein. Invariant Theory and Superalgebras: Regional Conference. Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, Providence, RI, 12 1987.
[9] Mowaffaq Hajja. A note on monomial automorphisms. Journal of Algebra, 85(1): 243–250, 1983.
[10] Mowaffaq Hajja. Rationality of finite groups of monomial automorphisms of k (x, y). Journal of Algebra, 109(1):46–51, 1987.
[11] Mowaffaq Hajja and Ming chang Kang. Finite group actions on rational function fields. Journal of Algebra, 149(1):139–154, 1992.
[12] Mowaffaq Hajja and Ming chang Kang. Three-dimensional purely monomial group actions. Journal of Algebra, 170(3):805–860, 1994.
[13] Mowaffaq Hajja and Ming-chang Kang. Some actions of symmetrical groups. Jour- nal of Algebra, 177(2):511–535, 1995.
[14] Akinari Hoshi and Yūichi Rikuna. Rationality problem of three-dimensional purely monomial group actions: the last case. Mathematics of Computation, 77(263):1823– 1829, 2008.
[15] Nathan Jacobson. Basic Algebra I. Dover Publications, United States, 2 edition, 06 2009.
[16] Ming-chang Kang. Rationality problem for some meta-abelian groups. Journal of Algebra, 322(4):1214–1219, 2009.
[17] Ming-chang Kang. Retract rationality and noether’s problem. International Mathe- matics Research Notices, 2009.
[18] Ming-chang Kang and Bernat Plans. Reduction theorems for noetherﱛs problem. Proceedings of the American Mathematical Society, 137(6):1867–1874, 2009.
[19] B. Leclerc. On identities satisfied by minors of a matrix. Advances in Mathematics, 100(1):101–132, 1993.
[20] H. W. Lenstra. Rational functions invariant under a finite abelian group. Inventiones Mathematicae, 25(3-4):299–325, 1974.
[21] J. Myron Masley and Hugh L. Montgomery. Cyclotomic fields with unique factor- ization. J. reine angew. Math, 286(287):248–256, 1976.
[22] Bernard R. McDonald. Linear algebra over commutative rings. M. Dekker, New York, 01 1984.
[23] Primož Moravec. Unramified brauer groups of finite and infinite groups. American Journal of Mathematics, 134(6):1679–1704, 2012.
[24] T. Muir. The theory of determinants in the historical order of development, volumes 1-4, 1911.
[25] David J. Saltman. Generic galois extensions and problems in field theory. Advances in Mathematics, 43(3):250–283, 1982.
[26] David J. Saltman. Noether’s problem over an algebraically closed field. Inventiones mathematicae, 77(1):71–84, 1984.
[27] David J. Saltman. Retract rational fields and cyclic galois extensions. Israel Journal of Mathematics, 47(2-3):165–215, 1984.
[28] David J. Saltman. Multiplicative field invariants. Journal of Algebra, 106(1):221– 238, 1987.
[29] David J. Saltman. Multiplicative field invariants and the brauer group. Journal of Algebra, 133(2):533–544, 1990.
[30] Richard G. Swan. Noetherﱛs problem in galois theory. In Emmy Noether in Bryn Mawr, pages 21–40. Springer, 1983.
[31] H.W. Turnbull. Theory of Determinants, Matrices and Invariants. Dover Publica- tions, United States.
[32] H.W.Turnbull.Theirreducibleconcomitantsoftwoquadraticsinnvariables.Trans. Cambridge Philos. Soc, 21:197–240, 1909.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54155-
dc.description.abstract令K為一體,G為有限群。
定義群$G$作用於(acts on)有理函數體L = K(x_{sigma} : sigma in G)上,
此處 au cdot x_{sigma} = x_{ ausigma}, forall au, sigma in G。
令K(G) = L^{G} = { frac{f}{g} in L : sigma(frac{f}{g}) = frac{f}{g}, forall sigma in G }
為此作用(action)的固定體(fixed field)。
Noether問題就是要決定K(G)在K之上是否為有理(rational)的(=purely transcendental, 純超越的。)
考慮兩循環群(cyclic group)C_m, C_n的半直積群G = C_m
times C_n.
目前我們已知若mathbb{Z}[zeta_n]為唯一分解整環(unique factorization domain),
且K包含足夠的單位根,則K(G)是有理的。
但尚未有人給出一對質數p, q的反例,使得mathbb{C}(C_p
times C_q)為非有理的。
本文給出K(C_m
times C_n)為有理的必要條件。
zh_TW
dc.description.abstractLet $K$ be a field, $G$ a finite group.
Let $G$ act on function field $L = K(x_{sigma} : sigma in G)$ by $ au cdot x_{sigma} = x_{ ausigma}$ for any $sigma, au in G$.
Denote the fixed field of the action by $K(G) = L^{G} = { frac{f}{g} in L : sigma(frac{f}{g}) = frac{f}{g}, forall sigma in G }$.
Noether's problem asks whether $K(G)$ is rational (purely transcendental) over $K$.
It is known that if $G = C_m
times C_n is semidirect product of cyclic groups C_m, C_n with mathbb{Z}[zeta_n] a unique factorization domain, and K contains an eth primitive root of unity, where e is the exponent of G. Then K(G) is rational over K.
But it is still an open question whether there exists prime pair p, q such that mathbb{C}(C_p
times C_q) is not rational over mathbb{C}.
In this paper, we show that, under some conditions, K(C_m
times C_n) is rational over K.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:42:20Z (GMT). No. of bitstreams: 1
ntu-104-R02221020-1.pdf: 812661 bytes, checksum: 5b0fe374c2b32d07aa4a5bbd110246d8 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書 i
中文摘要 iii
Abstract v
Introduction 1
1 Linear Algebra over Commutative Rings 5
1.1 Notations.................................. 5
1.2 Exterior Algebra .............................. 7
1.3 Meet Operation and Tableaux ....................... 15
1.4 Determinant of Compound Matrix..................... 27
1.5 Miscellaneous Identities .......................... 30
1.6 Matrix Conjugation and Their Minors................... 35
2 Main Theorem 43
2.1 Preliminaries................................ 43
2.2 Proof of Main Theorem .......................... 45
2.2.1 Problem Reduction ........................ 45
2.2.2 Rationality of K(Cm⋊Cn) ................... 53
2.3 Discussion ................................. 80
2.3.1 Characterization of r satisfying (r^n − 1)/(r - 1) ≡ 0 (mod m) . . . . . . 80
2.3.2 More Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Bibliography 89
dc.language.isoen
dc.title半直積群上的Noether問題zh_TW
dc.titleNoether's Problem on Semidirect Product Groupen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳榮凱,胡守仁,黃一樵
dc.subject.keywordNoether問題,有理化問題,逆Galois問題,半直積群,乘法群作用,zh_TW
dc.subject.keywordRationality problem,The inverse Galois problem,Semidirect product group,Multiplicative group action,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2015-07-21
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
793.61 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved