請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54155
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 朱樺(Huah Chu) | |
dc.contributor.author | Shang Huang | en |
dc.contributor.author | 黃玄 | zh_TW |
dc.date.accessioned | 2021-06-16T02:42:20Z | - |
dc.date.available | 2016-07-30 | |
dc.date.copyright | 2015-07-30 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-21 | |
dc.identifier.citation | [1] Hamza Ahmad, Mowaffaq Hajja, and Ming chang Kang. Rationality of some pro- jective linear actions. Journal of Algebra, 228(2):643–658, 06 2000.
[2] Fedor A. Bogomolov. The brauer group of quotient spaces by linear group actions. Mathematics of the USSR-Izvestiya, 30(3):455, 1988. [3] HuahChuandMing-changKang.Rationalityofp-groupactions.JournalofAlgebra, 237(2):673–690, 2001. [4] Huah Chu, Shou-Jen Hu, Ming-chang Kang, and Yu G. Prokhorov. Noether’s prob- lem for groups of order 32. Journal of Algebra, 320(7):3022–3035, 2008. [5] Huah Chu, Shou-Jen Hu, Ming-chang Kang, and Boris E Kunyavskii. Noetherﱛs problem and the unramified brauer group for groups of order 64. International Math- ematics Research Notices, page rnp217, 2009. [6] Huah Chu, Akinari Hoshi, Shou-Jen Hu, and Ming-chang Kang. Noether’s problem for groups of order 243. Journal of Algebra, 2015. [7] Ernst Fischer. Die isomorphie der invariantenkorper der endlichen abelschen grup- pen lineaerer transformatioen. Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-Physikalische Klasse, 1915:77–80, 1915. [8] Frank D. Grosshans, Gian-Carlo Rota, and Joel A. Stein. Invariant Theory and Superalgebras: Regional Conference. Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, Providence, RI, 12 1987. [9] Mowaffaq Hajja. A note on monomial automorphisms. Journal of Algebra, 85(1): 243–250, 1983. [10] Mowaffaq Hajja. Rationality of finite groups of monomial automorphisms of k (x, y). Journal of Algebra, 109(1):46–51, 1987. [11] Mowaffaq Hajja and Ming chang Kang. Finite group actions on rational function fields. Journal of Algebra, 149(1):139–154, 1992. [12] Mowaffaq Hajja and Ming chang Kang. Three-dimensional purely monomial group actions. Journal of Algebra, 170(3):805–860, 1994. [13] Mowaffaq Hajja and Ming-chang Kang. Some actions of symmetrical groups. Jour- nal of Algebra, 177(2):511–535, 1995. [14] Akinari Hoshi and Yūichi Rikuna. Rationality problem of three-dimensional purely monomial group actions: the last case. Mathematics of Computation, 77(263):1823– 1829, 2008. [15] Nathan Jacobson. Basic Algebra I. Dover Publications, United States, 2 edition, 06 2009. [16] Ming-chang Kang. Rationality problem for some meta-abelian groups. Journal of Algebra, 322(4):1214–1219, 2009. [17] Ming-chang Kang. Retract rationality and noether’s problem. International Mathe- matics Research Notices, 2009. [18] Ming-chang Kang and Bernat Plans. Reduction theorems for noetherﱛs problem. Proceedings of the American Mathematical Society, 137(6):1867–1874, 2009. [19] B. Leclerc. On identities satisfied by minors of a matrix. Advances in Mathematics, 100(1):101–132, 1993. [20] H. W. Lenstra. Rational functions invariant under a finite abelian group. Inventiones Mathematicae, 25(3-4):299–325, 1974. [21] J. Myron Masley and Hugh L. Montgomery. Cyclotomic fields with unique factor- ization. J. reine angew. Math, 286(287):248–256, 1976. [22] Bernard R. McDonald. Linear algebra over commutative rings. M. Dekker, New York, 01 1984. [23] Primož Moravec. Unramified brauer groups of finite and infinite groups. American Journal of Mathematics, 134(6):1679–1704, 2012. [24] T. Muir. The theory of determinants in the historical order of development, volumes 1-4, 1911. [25] David J. Saltman. Generic galois extensions and problems in field theory. Advances in Mathematics, 43(3):250–283, 1982. [26] David J. Saltman. Noether’s problem over an algebraically closed field. Inventiones mathematicae, 77(1):71–84, 1984. [27] David J. Saltman. Retract rational fields and cyclic galois extensions. Israel Journal of Mathematics, 47(2-3):165–215, 1984. [28] David J. Saltman. Multiplicative field invariants. Journal of Algebra, 106(1):221– 238, 1987. [29] David J. Saltman. Multiplicative field invariants and the brauer group. Journal of Algebra, 133(2):533–544, 1990. [30] Richard G. Swan. Noetherﱛs problem in galois theory. In Emmy Noether in Bryn Mawr, pages 21–40. Springer, 1983. [31] H.W. Turnbull. Theory of Determinants, Matrices and Invariants. Dover Publica- tions, United States. [32] H.W.Turnbull.Theirreducibleconcomitantsoftwoquadraticsinnvariables.Trans. Cambridge Philos. Soc, 21:197–240, 1909. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54155 | - |
dc.description.abstract | 令K為一體,G為有限群。
定義群$G$作用於(acts on)有理函數體L = K(x_{sigma} : sigma in G)上, 此處 au cdot x_{sigma} = x_{ ausigma}, forall au, sigma in G。 令K(G) = L^{G} = { frac{f}{g} in L : sigma(frac{f}{g}) = frac{f}{g}, forall sigma in G } 為此作用(action)的固定體(fixed field)。 Noether問題就是要決定K(G)在K之上是否為有理(rational)的(=purely transcendental, 純超越的。) 考慮兩循環群(cyclic group)C_m, C_n的半直積群G = C_m times C_n. 目前我們已知若mathbb{Z}[zeta_n]為唯一分解整環(unique factorization domain), 且K包含足夠的單位根,則K(G)是有理的。 但尚未有人給出一對質數p, q的反例,使得mathbb{C}(C_p times C_q)為非有理的。 本文給出K(C_m times C_n)為有理的必要條件。 | zh_TW |
dc.description.abstract | Let $K$ be a field, $G$ a finite group.
Let $G$ act on function field $L = K(x_{sigma} : sigma in G)$ by $ au cdot x_{sigma} = x_{ ausigma}$ for any $sigma, au in G$. Denote the fixed field of the action by $K(G) = L^{G} = { frac{f}{g} in L : sigma(frac{f}{g}) = frac{f}{g}, forall sigma in G }$. Noether's problem asks whether $K(G)$ is rational (purely transcendental) over $K$. It is known that if $G = C_m times C_n is semidirect product of cyclic groups C_m, C_n with mathbb{Z}[zeta_n] a unique factorization domain, and K contains an eth primitive root of unity, where e is the exponent of G. Then K(G) is rational over K. But it is still an open question whether there exists prime pair p, q such that mathbb{C}(C_p times C_q) is not rational over mathbb{C}. In this paper, we show that, under some conditions, K(C_m times C_n) is rational over K. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:42:20Z (GMT). No. of bitstreams: 1 ntu-104-R02221020-1.pdf: 812661 bytes, checksum: 5b0fe374c2b32d07aa4a5bbd110246d8 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員審定書 i
中文摘要 iii Abstract v Introduction 1 1 Linear Algebra over Commutative Rings 5 1.1 Notations.................................. 5 1.2 Exterior Algebra .............................. 7 1.3 Meet Operation and Tableaux ....................... 15 1.4 Determinant of Compound Matrix..................... 27 1.5 Miscellaneous Identities .......................... 30 1.6 Matrix Conjugation and Their Minors................... 35 2 Main Theorem 43 2.1 Preliminaries................................ 43 2.2 Proof of Main Theorem .......................... 45 2.2.1 Problem Reduction ........................ 45 2.2.2 Rationality of K(Cm⋊Cn) ................... 53 2.3 Discussion ................................. 80 2.3.1 Characterization of r satisfying (r^n − 1)/(r - 1) ≡ 0 (mod m) . . . . . . 80 2.3.2 More Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Bibliography 89 | |
dc.language.iso | en | |
dc.title | 半直積群上的Noether問題 | zh_TW |
dc.title | Noether's Problem on Semidirect Product Group | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳榮凱,胡守仁,黃一樵 | |
dc.subject.keyword | Noether問題,有理化問題,逆Galois問題,半直積群,乘法群作用, | zh_TW |
dc.subject.keyword | Rationality problem,The inverse Galois problem,Semidirect product group,Multiplicative group action, | en |
dc.relation.page | 91 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-21 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 793.61 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。