Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3773
Title: 以機器學習演算法偵測致命性心律不整
Detecting Life-Threatening Arrhythmia with Machine Learning Algorithms
Authors: Jen-Yee Hong
洪任諭
Advisor: 歐陽彥正(Yen-Jen Oyang)
Keyword: 心律不整,心室顫動,自動體外去顫器,心電圖,訊號處理,機器學習,
Arrhythmia,Ventricular fibrillation,Automatic external defibrillator,Electrocardiography,Signal processing,Machine learning,
Publication Year : 2016
Degree: 碩士
Abstract: 突發性院外心跳停止是引發成人死亡的首要原因之一,經常由心
室顫動 (VF) 造成。即時偵測這些致命性的心律不整,並且盡早以自動
體外電擊器 (AED) 施予去顫,是治療關鍵。過去的研究提出了各種偵
測心室顫動的演算法,但是大部分並未遵循現行由美國心臟病協會所
制定的醫學標準。本論文呈現了一個基於支撐向量機的機器學習演算
法,並在演算法的發展和測試過程當中,謹慎的依循美國心臟病協會
的醫學標準。整體而言,此演算法滿足美國心臟病協會標準要求的性
能,達到 93.21 % 的敏感度、99.88 % 的特異性、以及 89.28 % 的精確
度。此外,本研究使用的測試資料,比起過去研究更為全面,並且由
內科醫師檢視過確保正確性。因此,對於未來自動體外去顫器演算法
的研究,本資料集或許可作為一個更好的測試標準。
Sudden out-of-hospital cardiac arrest, one of the leading causes of death
among adults, is frequently caused by ventricular fibrillation (VF). Prompt
recognition of these life-threatening arrhythmias and early defibrillation treat-
ment using an automated external defibrillator (AED) are crucial. Previous
researchers proposed various VF detection algorithms, but most of them did
not comply with the existing medical standards for AED development set
by the American Heart Association (AHA). This thesis presents a machine-
learning AED algorithm based on support vector machine. The development
and evaluation processes of the algorithm carefully followed the AHA med-
ical standards. With an overall sensitivity of 93.21 %, specificity 99.88 %,
and precision of 89.28 %, the proposed algorithm satisfied all of the perfor-
mance goals required by the AHA guideline. In addition, the dataset used
in our study was more comprehensive then that used in previous studies and
was reviewed by a physician to ensure its correctness. Therefore, it might be
a better benchmark for future researches of AED algorithms.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3773
DOI: 10.6342/NTU201602152
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-105-1.pdf2.03 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved