請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3773完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐陽彥正(Yen-Jen Oyang) | |
| dc.contributor.author | Jen-Yee Hong | en |
| dc.contributor.author | 洪任諭 | zh_TW |
| dc.date.accessioned | 2021-05-13T08:36:38Z | - |
| dc.date.available | 2021-05-13T08:36:38Z | - |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-10 | |
| dc.identifier.citation | [1] B. J. Aehlert. ECGs Made Easy. Elsevier Health Sciences, 5th edition, 2015.
[2] F. Alonso-Atienza, E. Morgado, L. Fernández-Martínez, A. García-Alberola, and J. Rojo-Álvarez. Combination of ecg parameters with support vector machines for the detection of life-threatening arrhythmias. In 2012 Computing in Cardiology, pages 385–388, Sept 2012. [3] F. Alonso-Atienza, E. Morgado, L. Fernández-Martínez, A. García-Alberola, and J. L. Rojo-Álvarez. Detection of life-threatening arrhythmias using feature selection and support vector machines. IEEE Trans. Biomed. Eng., 61(3):832–840, March 2014. [4] Y. Alwan, Z. Cvetkovic, and M. J. Curtis. Classification of human ventricular arrhythmia in high dimensional representation spaces. CoRR, abs/1312.5354, 2013. [5] A. Amann, R. Tratnig, and K. Unterkofler. A new ventricular fibrillation detection algorithm for automated external defibrillators. In Computers in Cardiology, 2005, pages 559–562, Sept 2005. [6] A. Amann, R. Tratnig, and K. Unterkofler. Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators. Biomed. Eng. Online, 4(1):1–15, 2005. [7] A. Amann, R. Tratnig, and K. Unterkofler. Detecting ventricular fibrillation by timedelay methods. IEEE Trans. Biomed. Eng., 54(1):174–177, Jan 2007. [8] E. M. Anas, S. Y. Lee, and M. K. Hasan. Sequential algorithm for life threatening cardiac pathologies detection based on mean signal strength and EMD functions. Biomed. Eng. Online, 9:43, 2010. [9] M. A. Arafat, A. W. Chowdhury, and M. K. Hasan. A simple time domain algorithm for the detection of ventricular fibrillation in electrocardiogram. SIViP, 5(1):1–10, 2011. [10] S. Barro, R. Ruiz, D. Cabello, and J. Mira. Algorithmic sequential decision-making in the frequency domain for life threatening ventricular arrhythmias and imitative artefacts: a diagnostic system. J. Biomed. Eng., 11(4):320 – 328, 1989. [11] R. H. Clayton, A. Murray, and R. W. Campbell. Recognition of ventricular fibrillation using neural networks. Med. Biol. Eng. Comput., 32(2):217–220, Mar 1994. [12] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273– 297, 1995. [13] T. S. Diehl, editor. ECG interpretation made incredibly easy! Lippincott Williams and Wilkins, 5th edition, 2011. [14] I. K. Duskalov, I. A. Dotsinsky, and I. I. Christov. Developments in ecg acquisition, preprocessing, parameter measurement, and recording. IEEE Eng. Med. Biol. Mag., 17(2):50–58, March 1998. [15] R. Dzwonczyk, C. G. Brown, and H. A. Werman. The median frequency of the ecg during ventricular fibrillation: its use in an algorithm for estimating the duration of cardiac arrest. IEEE Trans. Biomed. Eng., 37(6):640–646, June 1990. [16] M. Elgendi, B. Eskofier, S. Dokos, and D. Abbott. Revisiting qrs detection methodologies for portable, wearable, battery-operated, and wireless ecg systems. PLoS One, 9(1):1–18, 01 2014. [17] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley. Physiobank, phys- iotoolkit, and physionet: Components of a new research resource for complex physiologic signals. Circulation, 101(23):e215–e220, 2000. [18] L. Goldman and A. I. Schafer, editors. Goldman-Cecil Medicine. Saunders, an imprint of Elsevier Inc., 25th edition, 2016. [19] P. S. Hamilton. E.p. limited: Open source ecg analysis software. [20] C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Networks, 13(2):415–425, Mar 2002. [21] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A, 454(1971):903– 995, 1998. [22] I. Jekova. Shock advisory tool: Detection of life-threatening cardiac arrhythmias and shock success prediction by means of a common parameter set. Biomed. Signal Process. Control, 2(1):25 – 33, 2007. [23] I. Jekova and V. Krasteva. Real time detection of ventricular fibrillation and tachycardia. Physiol. Meas., 25(5):1167, 2004. [24] I. Jekova and P. Mitev. Detection of ventricular fibrillation and tachycardia from the surface ECG by a set of parameters acquired from four methods. Physiol. Meas., 23(4):629–634, Nov 2002. [25] S. JS and M. WH. Recalls and safety alerts affecting automated external defibrillators. JAMA, 296(6):655–660, 2006. [26] V. Kalidas and L. S. Tamil. Enhancing accuracy of arrhythmia classification by combining logical and machine learning techniques. In 2015 Computing in Cardiology Conference (CinC), pages 733–736, Sept 2015. [27] J. S. Karthika, J. M. Thomas, and J. J. Kizhakkethottam. Detection of life-threatening arrhythmias using temporal, spectral and wavelet features. In 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pages 1–4, Dec 2015. [28] R. E. Kerber, L. B. Becker, J. D. Bourland, R. O. Cummins, A. P. Hallstrom, M. B. Michos, G. Nichol, J. P. Ornato, W. H. Thies, R. D. White, B. D. Zuckerman, and M. E. by the Board of Trustees of the American College of Cardiology. Automatic external defibrillators for public access defibrillation: Recommendations for specifying and reporting arrhythmia analysis algorithm performance, incorporating new waveforms, and enhancing safety: A statement for health professionals from the american heart association task force on automatic external defibrillation, subcommittee on aed safety and efficacy. Circulation, 95(6):1677–1682, 1997. [29] S. Kuo and R. Dillman. Computer detection of ventricular fibrillation. Proc. Computers in Cardiology, 1978. [30] S.-H. Lee, K.-Y. Chung, and J. S. Lim. Detection of ventricular fibrillation using hilbert transforms, phase-space reconstruction, and time-domain analysis. Personal Ubiquitous Comput., 18(6):1315–1324, Aug. 2014. [31] A. Lempel and J. Ziv. On the complexity of finite sequences. IEEE Trans. Inf. Theory, 22(1):75–81, Jan 1976. [32] H. Li, W. Han, C. Hu, and M. Q. H. Meng. Detecting ventricular fibrillation by fast algorithm of dynamic sample entropy. In Robotics and Biomimetics (ROBIO), 2009 IEEE International Conference on, pages 1105–1110, Dec 2009. [33] Q. Li, C. Rajagopalan, and G. D. Clifford. Ventricular fibrillation and tachycardia classification using a machine learning approach. IEEE Trans. Biomed. Eng., 61(6):1607–1613, June 2014. [34] B. LOWN and M. WOLF. Approaches to sudden death from coronary heart disease. Circulation, 44(1):130–142, 1971. [35] T. J. Mader, B. H. Nathanson, S. Millay, R. A. Coute, M. Clapp, and B. McNally. Out-of-hospital cardiac arrest outcomes stratified by rhythm analysis. Resuscitation, 83(11):1358 – 1362, 2012. [36] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. Cambridge University Press, New York, NY, USA, 2008. [37] B. McNally, R. Robb, M. Mehta, K. Vellano, A. L. Valderrama, P. W. Yoon, C. Sasson, A. Crouch, A. B. Perez, R. Merritt, and A. Kellermann. Out-of-hospital cardiac arrest surveillance — Cardiac Arrest Registry to Enhance Survival (CARES), United States, October 1, 2005–December 31, 2010. MMWR Surveill. Summ., 60(8):1–19, Jul 2011. [38] J. C. T. B. Moraes, M. Blechner, F. N. Vilani, and E. V. Costa. Ventricular fibrillation detection using a leakage/complexity measure method. In Computers in Cardiology, 2002, pages 213–216, Sept 2002. [39] A. Neurauter, T. Eftest?l, J. Kramer-Johansen, B. S. Abella, K. Sunde, V. Wenzel, K. H. Lindner, J. Eilevstj?nn, H. Myklebust, P. A. Steen, and H. U. Strohmenger. Prediction of countershock success using single features from multiple ventricular fibrillation frequency bands and feature combinations using neural networks. Resuscitation, 73(2):253–263, May 2007. [40] T. Nishiyama, A. Nishiyama, M. Negishi, S. Kashimura, Y. Katsumata, T. Kimura, N. Nishiyama, Y. Tanimoto, Y. Aizawa, H. Mitamura, K. Fukuda, and S. Takatsuki. Diagnostic accuracy of commercially available automated external defibrillators. J. Am. Heart. Assoc., 4(12), 2015. [41] J. Pardey. Detection of ventricular fibrillation by sequential hypothesis testing of binary sequences. In 2007 Computers in Cardiology, pages 573–576, Sept 2007. [42] S. M. Pincus. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. U.S.A., 88(6):2297–2301, Mar 1991. [43] M. Sansone, R. Fusco, A. Pepino, and C. Sansone. Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: a review. J Healthc Eng, 4(4):465–504, 2013. [44] N. V. Thakor, Y. S. Zhu, and K. Y. Pan. Ventricular tachycardia and fibrillation detection by a sequential hypothesis testing algorithm. IEEE Trans. Biomed. Eng., 37(9):837–843, Sept 1990. [45] The Public Access Defibrillation Trial Investigators. Public-access defibrillation and survival after out-of-hospital cardiac arrest. N. Engl. J. Med., 351(7):637–646, 2004. PMID: 15306665. [46] C. M. Tracy, J. Winkler, E. Brittain, M. B. Leon, S. E. Epstein, and R. O. Bonow. Determinants of ventricular arrhythmias in mildly symptomatic patients with coronary artery disease and influence of inducible left ventricular dysfunction on arrhythmia frequency. J. Am. Coll. Cardiol., 9(3):483–488, 1987. [47] M. L. Weisfeldt, C. M. Sitlani, J. P. Ornato, T. Rea, T. P. Aufderheide, D. Davis, J. Dreyer, E. P. Hess, J. Jui, J. Maloney, G. Sopko, J. Powell, G. Nichol, and L. J. Morrison. Survival after application of automatic external defibrillators before arrival of the emergency medical system: Evaluation in the resuscitation outcomes consortium population of 21 million. J. Am. Coll. Cardiol., 55(16):1713 – 1720, 2010. [48] D. Xia, Q. Meng, Y. Chen, and Z. Zhang. Classification of Ventricular Tachycardia and Fibrillation Based on the Lempel-Ziv Complexity and EMD, pages 322–329. Springer International Publishing, Cham, 2014. [49] X. S. Zhang, Y. S. Zhu, N. V. Thakor, and Z. Z. Wang. Detecting ventricular tachycardia and fibrillation by complexity measure. IEEE Trans. Biomed. Eng., 46(5):548–555, May 1999. [50] Z.-X. Zhang, S.-H. Lee, and J. S. Lim. Discrimination of Ventricular Arrhythmias Using NEWFM, pages 176–183. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3773 | - |
| dc.description.abstract | 突發性院外心跳停止是引發成人死亡的首要原因之一,經常由心
室顫動 (VF) 造成。即時偵測這些致命性的心律不整,並且盡早以自動 體外電擊器 (AED) 施予去顫,是治療關鍵。過去的研究提出了各種偵 測心室顫動的演算法,但是大部分並未遵循現行由美國心臟病協會所 制定的醫學標準。本論文呈現了一個基於支撐向量機的機器學習演算 法,並在演算法的發展和測試過程當中,謹慎的依循美國心臟病協會 的醫學標準。整體而言,此演算法滿足美國心臟病協會標準要求的性 能,達到 93.21 % 的敏感度、99.88 % 的特異性、以及 89.28 % 的精確 度。此外,本研究使用的測試資料,比起過去研究更為全面,並且由 內科醫師檢視過確保正確性。因此,對於未來自動體外去顫器演算法 的研究,本資料集或許可作為一個更好的測試標準。 | zh_TW |
| dc.description.abstract | Sudden out-of-hospital cardiac arrest, one of the leading causes of death
among adults, is frequently caused by ventricular fibrillation (VF). Prompt recognition of these life-threatening arrhythmias and early defibrillation treat- ment using an automated external defibrillator (AED) are crucial. Previous researchers proposed various VF detection algorithms, but most of them did not comply with the existing medical standards for AED development set by the American Heart Association (AHA). This thesis presents a machine- learning AED algorithm based on support vector machine. The development and evaluation processes of the algorithm carefully followed the AHA med- ical standards. With an overall sensitivity of 93.21 %, specificity 99.88 %, and precision of 89.28 %, the proposed algorithm satisfied all of the perfor- mance goals required by the AHA guideline. In addition, the dataset used in our study was more comprehensive then that used in previous studies and was reviewed by a physician to ensure its correctness. Therefore, it might be a better benchmark for future researches of AED algorithms. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T08:36:38Z (GMT). No. of bitstreams: 1 ntu-105-P03922004-1.pdf: 2075311 bytes, checksum: 24df02236220a8a64269d211ae337c6c (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 誌謝iii
Acknowledgements v 中文摘要vii Abstract ix 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Methodology 11 2.1 Datasets Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.1 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 Measure Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.2 Asystole Detection . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.3 Labelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.4 Data Cleaning and Correction . . . . . . . . . . . . . . . . . . . 16 2.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 Time-Domain Features . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.2 QRS Detector-Based Features . . . . . . . . . . . . . . . . . . . 25 2.3.3 Frequency-Domain Features . . . . . . . . . . . . . . . . . . . . 27 2.3.4 Complexity Measure-Based Features . . . . . . . . . . . . . . . 30 2.3.5 Phase Space Reconstruction . . . . . . . . . . . . . . . . . . . . 35 2.4 Machine Learning Algorithms for Classification . . . . . . . . . . . . . . 36 2.4.1 Soft Margin Support Vector Machine (SVM) . . . . . . . . . . . 38 2.4.2 Multiclass Support Vector Machine . . . . . . . . . . . . . . . . 41 2.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.5.1 AHA Recommendations for Reporting Performance . . . . . . . 43 2.6 Parameter Tuning for Performance Optimization . . . . . . . . . . . . . 44 2.7 Testing the Machine Learning Classifier . . . . . . . . . . . . . . . . . . 44 2.8 Implementation of the System . . . . . . . . . . . . . . . . . . . . . . . 44 3 Results 47 3.1 Dataset Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 Performance of Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . 49 4 Discussions 53 4.1 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.1.1 Common Causes of Errors . . . . . . . . . . . . . . . . . . . . . 55 4.1.2 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2 Potential Roles of Linear Models . . . . . . . . . . . . . . . . . . . . . . 62 4.3 Importance of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.4 Limitations of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5 Conclusion 67 References 71 | |
| dc.language.iso | en | |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 心律不整 | zh_TW |
| dc.subject | 心室顫動 | zh_TW |
| dc.subject | 自動體外去顫器 | zh_TW |
| dc.subject | 心電圖 | zh_TW |
| dc.subject | 訊號處理 | zh_TW |
| dc.subject | Arrhythmia | en |
| dc.subject | Electrocardiography | en |
| dc.subject | Automatic external defibrillator | en |
| dc.subject | Ventricular fibrillation | en |
| dc.subject | Machine learning | en |
| dc.subject | Signal processing | en |
| dc.title | 以機器學習演算法偵測致命性心律不整 | zh_TW |
| dc.title | Detecting Life-Threatening Arrhythmia with Machine Learning Algorithms | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴飛羆(Fei Pei Lai),孫維仁(Wei-Zen Sun),韓謝忱(Hsieh-Cheng Han) | |
| dc.subject.keyword | 心律不整,心室顫動,自動體外去顫器,心電圖,訊號處理,機器學習, | zh_TW |
| dc.subject.keyword | Arrhythmia,Ventricular fibrillation,Automatic external defibrillator,Electrocardiography,Signal processing,Machine learning, | en |
| dc.relation.page | 77 | |
| dc.identifier.doi | 10.6342/NTU201602152 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-08-10 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 2.03 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
