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中文摘要

突發性院外心跳停止是引發成人死亡的首要原因之一，經常由心

室顫動 (VF)造成。即時偵測這些致命性的心律不整，並且盡早以自動

體外電擊器 (AED)施予去顫，是治療關鍵。過去的研究提出了各種偵

測心室顫動的演算法，但是大部分並未遵循現行由美國心臟病協會所

制定的醫學標準。本論文呈現了一個基於支撐向量機的機器學習演算

法，並在演算法的發展和測試過程當中，謹慎的依循美國心臟病協會

的醫學標準。整體而言，此演算法滿足美國心臟病協會標準要求的性

能，達到 93.21 %的敏感度、99.88 %的特異性、以及 89.28 %的精確

度。此外，本研究使用的測試資料，比起過去研究更為全面，並且由

內科醫師檢視過確保正確性。因此，對於未來自動體外去顫器演算法

的研究，本資料集或許可作為一個更好的測試標準。

關鍵字：心律不整、心室顫動、自動體外去顫器、心電圖、訊號

處理、機器學習
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Abstract

Sudden out-of-hospital cardiac arrest, one of the leading causes of death

among adults, is frequently caused by ventricular fibrillation (VF). Prompt

recognition of these life-threatening arrhythmias and early defibrillation treat-

ment using an automated external defibrillator (AED) are crucial. Previous

researchers proposed various VF detection algorithms, but most of them did

not comply with the existing medical standards for AED development set

by the American Heart Association (AHA). This thesis presents a machine-

learning AED algorithm based on support vector machine. The development

and evaluation processes of the algorithm carefully followed the AHA med-

ical standards. With an overall sensitivity of 93.21 %, specificity 99.88 %,

and precision of 89.28 %, the proposed algorithm satisfied all of the perfor-

mance goals required by the AHA guideline. In addition, the dataset used

in our study was more comprehensive then that used in previous studies and

was reviewed by a physician to ensure its correctness. Therefore, it might be

a better benchmark for future researches of AED algorithms.

Keywords: Arrhythmia, Ventricular fibrillation, Automatic external defibril-

lator, Electrocardiography, Signal processing, Machine learning
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Chapter 1

Introduction

1.1 Background

Sudden out-of-hospital cardiac arrest (OHCA), one of the leading causes of death among

adults, is an important public health problem. According to the surveillance conducted

by the American Centers for Disease Control and Prevention (CDC) in the Cardiac Ar-

rest Registry to Enhance Survival (CARES), it was estimated that approximately 300,000

OHCA events occurred annually in the United States and about 92% of the patients who

suffered from OHCA died [37]. The term OHCA refers to the cessation of cardiac me-

chanical activity outside of a hospital setting which is confirmed by the absence of signs of

circulation [37]. There are various causes of OHCA, such as trauma, overdose, asphyxia,

etc., but according to a previous study, 70 % - 85 % of OHCAwere of cardiac causes [37].

Among the known cardiac causes, lethal cardiac arrhythmias, i.e., ventricular fibrillation

and pulseless ventricular tachycardia are of great importance not only because they were

frequently seen (23.7%, and 47.3% of arrests witnessed by a bystander, a first respon-

der, or EMS personnel) [37], but also because they can be treated effectively with early

defibrillation [45]. Four major rhythm types on surface electrocardiogram can be seen

during cardiac arrest, namely pulseless ventricular tachycardia (VT), ventricular fibrilla-

tion (VF), pulseless electrical activity (PEA), or asystole [35]. Witnessed OHCA patients

having an initial rhythm of ventricular fibrillation or pulseless ventricular tachycardia are

the most likely to respond to cardiopulmonary resuscitation (CPR) or defibrillation and
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are therefore more likely to survive an OHCA event [37], but the chance of survival de-

clines rapidly with time. To achieve immediate analysis of electrocardiography (ECG) to

detect these arrhythmias and deliver defibrillation treatment as needed, simply relying on

emergency medical service (EMS) personnel might not be enough. With the aid of auto-

mated external defibrillators (AEDs), it became possible for the bystanders who are not

medical personnel to help the prompt delivery of defibrillation. The Public-Access De-

fibrillation (PAD) Trial conducted in 2000 have revealed that implementing an organized

emergency-response plan to provide early defibrillation with AEDs doubled the survival

rate of OHCA. In addition, trained volunteers could use publicly accessible AEDs safely

and effectively [45]. Following studies also supported the idea of implementing public

AED programs [47].

Invented by Einthoven in the early 1990s, ECG has long been applied in the diagnosis

of heart diseases. It allows simultaneously and non-invasive recording of myocardial ac-

tivation from several pre-defined locations on the body surface, which helps observe the

electrical activation of different cardiac regions and can be used to diagnose and analyze

arrhythmias. The electrical activation of the heart involves spreading of a depolarizing

electrical wave through the conducting tissues, some specialized cardiac muscles, to trig-

ger the contraction of the heart [18]. Figure 1.1 depicted a typical waveform of the ECG

which can be seen during the activation of a heartbeat. It consists of several parts, P wave,

P-R interval, QRS complex, S-T segment, T wave, and occasionally, U wave. Each part

bears its own physiological meaning. The P wave is the first wave encountered. It is

caused by the activation of the cardiac atria which is triggered by the depolarization wave

coming from the sinoatrial node. The P-R interval originates from the short conduction

pause at the A-V node. The QRS complex, often the most prominent part of the ECG

waveform, is generated by the depolarization of the cardiac ventricles. Last, the T wave

reflects the repolarization of the cardiac ventricular muscles [18].

Normal activation of cardiac rhythms starts from the sino-atrial node in the right atrium

and then spreads over the conducting system composed of the bundle of His and Purkinje

fibers. Ventricular arrhythmias, on the other hand, are cardiac rhythms that directly orig-

2
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Figure 1.1: Typical ECG Waveform of a Heartbeat
The public domain ECG image is created by Anthony Atkielski.

inate in the ventricles below the bundle of His. Because of the activation through an ab-

normal pathway rather than the efficient cardiac conduction system, the conduction time

is prolonged, causing a widened QRS complex on the ECG. In addition, since it originates

in the ventricles, atrial depolarization does not occur and thus P wave is absent [13].

Three or more consecutive premature ventricular contractions (PVC or VPC) with a

ventricular rate exceeding 100 beats-per-minute (BPM) is termed ventricular tachycardia

(VT). VT is an unstable rhythm that causes drops in the cardiac output. It can quickly

degenerate to ventricular fibrillation and leads to complete cardiac collapse. Figure 1.2

showed a typical ECG strip containing VT.

Figure 1.2: An ECG Strip of Ventricular Tachycardia
Taken from record 421 of the MIT-BIH Malignant Ventricular Ectopy Database (VFDB)

The atrial rhythm and rate cannot be determined. The ventricular rhythm is mostly

regular or slightly irregular, with a rapid rate between 100 – 250 BPM. The P wave is

3
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usually absent and the QRS complex is wide and bizarre.

Several variations of VT exist. Monomorphic VT has QRS complexes in a uniform

shape while frequently changing QRS complex can be seen in polymorphic VT. Torsades

de pointes is a kind of polymorphic VTwith a rapid and irregular rate between 250 and 350

BPM. It has QRS complexes that keep changing. The amplitude of each successive QRS

complex gradually increases then decreases. Overall, this pattern looks spindle-shaped.

Ventricular flutter, another variant of VT is triggered by a single ventricular focus firing

at a rapid rate of 250 to 350 BPM, causing a sine-wave like appearance [13].

Ventricular fibrillation (VF) is caused by disorganized electrical activities arising from

many different foci in the ventricles. Consequently, the cardiac ventricles quiver instead of

contract, so there is no effective muscular contraction or cardiac output. Without prompt

treatment, it leads to ventricular standstill and death. Figure 1.3 demonstrated the typical

look of VF.

Figure 1.3: An ECG Strip of Ventricular Fibrillation
Taken from record cu01 of the Creighton University Ventricular Tachyarrhythmia Database (CUDB)

On the ECG strip containing VF, one can see fibrillatory waves with no recognizable

pattern or regularity. The heart rate, P wave, PR interval, T wave, and QT interval, there-

fore cannot be determined. VF rhythms with large fibrillatory waves are called coarse VF

while the ones with small waves are named fine VF. [13]

Currently, AED manufacturers follow some existing standards such as the ones pub-

lished by ANSI Association for the Advancement of Medical Instrumentation (AAMI). To

help the development and correct evaluation of the performance of AED algorithms, the

American Heart Association (AHA) organized a task force on the AED and published a

statement in 1999 and suggested that all AEDs should meet similar algorithm performance

specifications [28]. The guideline covered several aspects of AED algorithm evaluation.

The AHA guideline classifies all cardiac rhythms into three broad categories which

4



doi:10.6342/NTU201602152

AEDalgorithms should recognize and then decidewhether it should deliver a defibrillation

shock or not [28].

• Shockable rhythms: This group is composed of coarse VF and rapid VT. Rapid VT

refers to VT with a heart rate more than 180 BPM. Patients with these rhythms are

the ones for whom defibrillation can bring the greatest benefit with nearly no risks.

Therefore when an AED algorithm sees these rhythms, a decision to deliver a shock

should be made. Coarse VF means VF with larger amplitude. The AHA statement

refers to VF with an amplitude more than 0.2 millivolts (mV) as coarse VF while

some other ECG text books use a threshold of 0.3 mV instead [1].

• Intermediate rhythms: This group contains fine VF and slower VT, for which the

benefit of delivering a shock is uncertain.

• Non-shockable rhythms: All of the other cardiac rhythms belong to this class, in-

cluding asystole which means no electrical activity at all. Delivering an electric

shock to these rhythms not only provides no benefit to the patients, but it is also con-

sidered harmful and could cause damage. For this rhythm class, no shock should be

given. According to the AHA guideline, the following non-shockable rhythm types

should be included in the dataset used for algorithm testing [28].

– Normal sinus rhythm (NSR)

– Supraventricular tachycardia (SVT), including sinus tachycardia (ST), bundle

branch block (BBB), pre-excitation

– Sinus bradycardia (SB)

– Premature ventricular contraction (PVC or VPC)

– Atrial fibrillation (AF)

– Atrial flutter (AFL)

– Second- or third-degree atrio-ventricular block (AV blocks)

– Idioventricular rhythms (IVR)

– Asystole

5
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For the shockable rhythms, a high sensitivity is required while for the non-shockable

ones a high specificity is desired since patient without VF or rapid VT should not receive

any defibrillation treatment. The requirements for all rhythm classes were listed in Table

1.1.

6
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Table 1.1: AHA Performance Specifications for Arrhythmia Analysis Algorithms

Rhythms Minimum Test Sample Size Performance Goal
Shockable
Coarse VF 200 >90% sensitivity
Rapid VT 50 >75% sensitivity

Nonshockable 300 total
NSR 100 > 99% specificity
AF, SB, SVT, heart block, IVR, PVCs 30 > 95% specificity
Asystole 100 > 95% specificity

Intermediate
Fine VF 25 Report only
Other VT 25 Report only

7
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Although AEDs have been used widely and have improved survival of OHCA, these

devices are far from perfect. A study published in 2006 analyzed weekly US Food and

Drug Administration (FDA) Enforcement Reports between January 1996 and December

2005 to identify all recalls and safety alerts of AEDs. Malfunction of AEDs was not un-

usual. During the study period, 21.2% of AEDs distributed were recalled, most often due

to electrical or software problems [25]. In 2015, Nishiyama et al. tested the performance

of commercially available AED systems [40]. It revealed that some commercially avail-

able AEDs correctly recognized VF in most cases, but when diagnosing VT, the diagnostic

accuracy was not as impressive. No AEDs investigated in the study could attain both a

> 75 % sensitivity for rapid VT and a > 95 % specificity for SVT. Obviously, there were

still rooms for further improvement in the diagnostic algorithms.

1.2 Motivation

Traditionally, analysis of ECG mostly based on some simpler signal processing and pat-

tern recognition techniques. Lately, using machine learning approaches to analyze ECG

patterns became popular [6]. Sansone et al. provided a review on ECG pattern recognition

using support vector machine (SVM) and artificial neural network in 2013 [43]. However,

most of these researches focused on beat type classifications for isolated beats and tried to

distinguish every single abnormal beat type from a normal beat. In AED applications, on

the contrary, the algorithms need to classify the whole ECG rhythm segment and make a

correct shock/no-shock decision with the performance requirements set by the AHA. For

the purpose of application in AEDs, Amann et al. did a quite comprehensive review of

the reliability and performance of existing VF detection methods in 2005 [6]. Some of

the methods utilized statistical information of the data sequence or auto-correlation func-

tion in the time domain. Some did spectral analyses in the frequency domain, while others

used more complicated techniques such as complexity measures or wavelet transforms. In

a binary classification setting discriminating VF and non-VF rhythms from an 8-second

ECG segment, the overall sensitivity of the evaluated algorithms tested against MITDB,

CUDB, and AHA database ranged from 9.0 % to 92.5 % while the specificity was 35.0 %

8
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- 99.9 %, which varied a lot. No single method was both good in terms of sensitivity and

specificity [6]. Following these results, Alonso-Atienza et al. tried to aggregate 13 exist-

ing weaker VF detection algorithms together with machine learning techniques based on

SVM to make better predictions of VF or shockable rhythms [3]. Tested against MITDB,

CUDB, and VFDB datasets, they achieved a sensitivity of 91.9 % and a specificity of 97.1

%while recognizing a VF rhythm from an 8-second ECG segment. The accuracy was also

high, being 96.8 % for VF/non-VF binary classification. However, just like other similar

researches, these results could not be directly applied to AED scenario either. Most of the

studies performed binary classification rather than multiclass classification and hence did

not make any distinction between coarse and fine VF or rapid and slower VT as required

by the AHA. So the correct prediction of VF did not correspond to a correct decision of

delivering a defibrillation shock. Second, the datasets they used might not have rhythm

types that were diverse enough to ensure generalizability. Furthermore, the performance

metrics reported were not in the format recommended by the AHA. For example, the AHA

guideline suggested that sensitivity for coarse VF and rapid VT should be reported along

with specificity of other non-shockable rhythms, each of which had different performance

goals.

Among the literature we have reviewed, many of the VF detection studies did not

follow the recommendations of the AHA guideline for AED. The studies by Jekova et al.

in 2002, 2004, and 2007 followed the AHA guideline in most parts of the study design

and had a sensitivity of 93.4 % and specificity of 94.3 % [22, 23, 24]. However, the

rhythm types (6 – 12) included in these studies were less diverse. Moreover, part of their

dataset and annotations were private and not available to other researchers, making the

direct comparison with their results or improvement based on their work more difficult.

Also, the performance reported was the in-sample performance, rather than tested against

a separate test or validation set, which might over-estimate the performance. The study

by Anas et al. in 2010 tried to follow the AHA recommendations, but they only followed

the suggested classification scheme and did not follow the performance evaluation part

[8]. Despite the impressive performance being reported in previous researches, the lack

9
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of compliance with a common medical standard might make their clinical relevance more

uncertain.

Another issue in performance metrics might be less obvious, but we need to take it

into account. In these publicly available ECG datasets, VF samples only composed of

a small fraction of them. For instance, in MITDB, which is popular when testing the

ECG algorithms, nearly 90 % of the samples in it are non-shockable rhythms which can

largely dominate the result of accuracy. Merely reporting the accuracy when such a highly

unbalanced dataset is used can be flawed. Last, some of the existing studies either used

private datasets or did not provide their source code, so repeating their experiments or

comparing these studies directly became impossible.

To address the issues mentioned above, we compiled a more diverse dataset based

on all publicly available free ECG datasets and tried to make the experiment settings as

close to the AHA recommendations as possible. Moreover, all of the source code for this

study is open-source software which can be downloaded freely from the Internet. This

will facilitate future studies in the same field. It is relatively easy to utilize the datasets we

have collected and to follow our workflow, and then make further improvement. Trying

to reproduce the experiments and validate our results are also possible.

1.3 Organization of the Thesis

This thesis is organized as follows. Chapter 2 describes the detailed description about

each step of this study, including, but not limited to data collection, feature extraction

methods, and the classification algorithms. Chapter 3 presents the experiment results and

performance evaluation of the proposed system. A discussion regarding the results is

provided in chapter 4. Finally, chapter 5 concludes the current study.

10
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Chapter 2

Methodology

The workflow of the study was summarized in Figure 2.1.

Figure 2.1: Flowchart of the Ventricular Arrhythmia Classification Process

11
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2.1 Datasets Collection

One of the goals of this study was to compile a more comprehensive free dataset suit-

able for researches on AED algorithms. Among existing studies, the publicly available

datasets hosted by Physionet.org were extensively used. Some studies also included AHA

database, but it is not freely available for download. Among the public free datasets,

the MIT-BIH Arrhythmia Database (MITDB), MIT-BIH Malignant Ventricular Arrhyth-

mia Database (VFDB), and Creighton University Ventricular Tachyarrhythmia Database

(CUDB) were frequently used for studies related to ventricular fibrillation [17]. How-

ever, these databases were not designed specifically for this purpose and the case numbers

of ventricular arrhythmias were relatively low. Hence we reviewed other publicly avail-

able free datasets seeking for more cases of ventricular arrhythmias. Furthermore, for

safety reason, a high specificity was very critical for the non-shockable rhythms and this

was stressed in the AHA recommendations for AED development as well. To improve

generalizability of the machine learning algorithm and to make sure the algorithms have

adequate specificity, it could be better if we have a more diversified dataset. Therefore, in

this study, we tried to include ECG signals from the European ST-T Database (EDB) and

added some more ventricular arrhythmia signals picked fromMassachusetts General Hos-

pital/Marquette Foundation (MGH/MF) Waveform Database (MGHDB) whenever appli-

cable. The signal recorded in MITDB contained two channels and we only used the first

onewhichwas recorded from lead II. This was closer to the setting of AEDs. TheMGHDB

gathered various types of physiological signals in multiple channels. We only selected the

channels containing lead II ECG strips as well.

Ventricular tachycardia with a heart rate more than 180 beat-per-minute was defined

as rapid VT and classified in the shockable group along with VF. On the other hand, VT

with a heart rate slower than 180 BPM did not require an electric shock and was in the

intermediate group. To make this distinction when labelling the VT ECG segments, we

needed precise information about their heart rates. So we could only include ECG seg-

ments with proper beat annotations for which the heart rate could be derived reliably. The

ECG samples annotated as VT in VFDB were excluded from our study for this reason.

12
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However, those marked as ventricular flutter (VFL) were still included since by definition

VFL is an extreme form of rapid VT.

For CUDB, we excluded all of the samples marked as NSR. The database focused on

VF only and according to its documentation other non-VF rhythms, including VT, were

all annotated as NSR. That implied some potentially shockable or intermediate rhythms

were labelled as normal rhythms in their annotation files. Therefore, these samples should

not be included in our study. This issue was not addressed by many previous studies using

the database.

2.1.1 Segmentation

According to previous studies of ventricular arrhythmia classification problems and our

preliminary tests, a segment size of 8 seconds was suitable for this purpose [3]. Because

the AHA recommendations for AED required reporting performance on artifact-free sam-

ples, segments marked as containing artifacts in their annotations were excluded from this

study. The artifact-free parts were then split into different large chunks based on their

rhythm annotations in the database. Then, in each chunk of the same rhythm type, we

performed non-overlapping segmentation with a segment size of 8 seconds. Finally, each

of the 8-second ECG segment was referred to as a sample in this study. The training and

prediction tasks were performed on these 8-second samples.

2.2 Preprocessing

Some studies performed filtering and other pre-processing prior to data segmentation.

However, this did not reflect the real clinical scenario where a long recording was not

available when the AED leads were just attached to the patient. Therefore, we performed

segmentation first, simulating the clinical settings of AED usage. The algorithm only got

an ECG segment, and should perform the prediction correctly based solely on processing

that segment.

All ECG segments underwent these standard pre-processing steps proposed in previ-

13
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ous studies [3].

1. Mean subtraction

2. Normalization (this step was skipped when calculating the amplitude feature since

we needed the original voltage values of the ECG signals)

3. Five order moving average

4. Drift suppression with a cutoff frequency of 1 Hz (high-pass filtering) [14].

5. Lowpass filtering with a Butterworth filter using a cutoff frequency of 30 Hz. To

prevent phase distortion, we used a zero-phase filter here.

In some articles, resampling all ECG signal from different databases to the same sampling

rate was suggested. Since most of the features we used in the study already performed

normalization based on the length of the data sequence, resampling to the same sequence

length might not be necessary. Thus we only performed resampling when the feature

explicitly required a specific sampling rate, which will be described in later sections.

2.2.1 Measure Amplitudes

When measuring the amplitude of ECG signals, we used the peak-to-peak amplitude. A

simple derivative-based method implemented by the scipy Python package (argrelmax()

and argrelmin() functions) was used to find the peaks and valleys. Then, we calculate

peak-to-peak amplitude for every pair of adjacent peaks and valleys. The global maxi-

mum of all peak-to-peak amplitude values was regarded as the overall amplitude of the

whole ECG segment. The process was demonstrated in Figure 2.2. Before calculating the

amplitude, we processed the ECG segments with the same denoising and drift suppres-

sion preprocessing mentioned earlier. However, the normalization step was not performed

since we needed the raw amplitude values of the ECG signals.

14
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Figure 2.2: Detecting Peaks in ECG Signal for Estimating Peak-to-Peak Amplitudes
The blue dots in the figure are the peaks and the green ones mark the valleys.

2.2.2 Asystole Detection

Asystole or standstill was diagnosed when there was no electrical activity in the ECG.

However, for a signal processing application, it is not possible to get a completely flat line

because of noise and artifacts. Also, note that fine VF means VF with a lower amplitude

less than 0.2 mV. Hence in some extreme cases, it might not be possible even for human

eyes to distinguish fine VF with a pretty low amplitude from asystole. So an operational

definition of asystole was used here instead. We defined that an ECG segment with a max-

imum peak-to-peak amplitude less than 0.15 mV was treated as asystole. Since a patient

with asystole should not be delivered a shock, these segments did not require machine

learning classification since they were certainly non-shockable. These ECG segments

were therefore excluded from further processing and classification tasks. However, if an

ECG segment had an amplitude higher than 0.15 mV, but it was already manually marked

as asystole in the annotation files coming with the ECG databases, we still regarded it as

asystole.

2.2.3 Labelling

Based on the classification scheme suggested by the AHA, we needed to solve a multiclass

classification problem. All of the ECG rhythms the algorithm received should be classified

into three classes.

• Shockable: coarse VF and rapid VT (heart rate more than 180 BPM).
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• Intermediate: fine VF (VF with a peak-to-peak amplitude less than 0.2 mV), and

slow VT.

• Non-shockable: all other rhythm types.

2.2.4 Data Cleaning and Correction

During the experiments, we noted that some of the annotations in the original datasets

provided by Physionet.org contained errors. The author of this thesis was a qualified

practicing physician who received medical training in Taipei Veteran’s General Hospital,

one of the largest medical centers in Taiwan. With more than six years of ECG reading

experience, the author was capable of correcting some of the obvious errors manually.

Some ECG segments actually contained ventricular arrhythmias, but these segments were

marked as normal in the original annotation files. In these cases, we revised their labels to

the correct rhythm types whenever possible. If the annotation was incorrect, but the actual

class was in doubt, the sample was excluded. Besides, according to the documentations,

ECG segments containing high level of noise or artifacts should also be marked as such

in their annotations. However, we noted that some of the ECG segments have poor signal

quality, but no artifacts were marked in the annotation files. So we tried to manually

exclude them with care.

2.3 Feature Extraction

Various techniques to recognize ventricular arrhythmias were proposed in existing litera-

ture. They could roughly be classified into time-domain features, frequency domain fea-

tures, spectral analysis features, complexity measure-based features, etc. Table 2.1 sum-

marized the feature sets of different domains adopted in previous similar VF detection

researches we have reviewed. Among these features, time domain features and spectral

analysis-based features were most frequently used.
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Table 2.1: Features of Different Categories Used in Previous VF Detection Researches
Year Authors time domin frequency domain complexity EMD phase space others Total

1990 Thankor et al. [44] 1 0 0 0 0 0 1
1994 Clayton et al. [11] 0 5 0 0 0 0 5
1999 Zhang et al. [49] 0 0 1 0 0 0 1
2002 Jekova and Mitev [24] 2 5 1 0 0 0 8
2002 Moraes et al. [38] 0 1 1 0 0 0 2
2004 Jekova and Krasteva [23] 3 0 0 0 0 1 4
2005 Amann et al. [5] 0 0 0 0 1 0 1
2005 Amann et al. [6] 5 4 1 0 0 3 13
2007 Amann et al. [7] 0 0 0 0 1 0 1
2007 Pardey [41] 1 0 1 0 0 0 2
2007 Neurauter et al. [39] 4 6 0 0 0 0 10
2007 Jekova [22] 5 4 1 0 0 0 10
2008 Zhang et al. [50] 19 0 0 0 0 0 19
2009 Li et al. [32] 0 0 1 0 0 0 1
2010 Anas et al. [8] 1 0 0 1 0 0 2
2011 Arafat et al. [9] 1 0 0 0 0 0 1
2012 Alonso-Atienza et al. [2] 4 4 1 0 2 0 11
2014 Xia et al. [48] 0 0 0 5 0 0 5
2014 Alonso-Atienza et al. [3] 5 4 2 0 2 0 13
2014 Li et al. [33] 3 9 1 0 1 0 14
2014 Alwan et al. [4] 0 5–15 0 0 0 0 0
2014 Lee et al. [30] 7 0 0 0 4 0 11
2015 Karthika et al. [27] 5 3 1 0 2 7 18
2015 Kalidas and Tamil [26] 6 5 0 0 0 0 11
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Amann et al. did a review of many well-known features in 2005 [6]. They concluded

that among the various features they tested, the best ones worked in the time domain. The

spectral parameters utilized the information about energy distribution from within the fre-

quency domain, but did not use phase information. The complexity-based algorithms had

a poor performance in the region where specificity > 80%. From the viewpoint of a physi-

cian, features of different categories had different clinical implications. For example, a

high threshold-crossing count in the time domain or a higher peak frequency in the power

spectrum actually implied a rapid heart rate. The complexity-based methods, on the other

hand, captures the irregularity of VF rhythms, which was also part of the ECG interpre-

tation process of a cardiologist. As different features excelled in various aspects of VF

detection, aggregating their results with a machine learning classifier might improve the

overall performance. Furthermore, many existing studies focused on binary classification

problems which recognized VF only and the simple feature sets they proposed might not

be sufficient for a multiclass problem we tried to solve. Therefore, in this study, we ex-

tracted 27 features of different domains from each 8-second ECG segment. The extracted

features and their characteristics were summarized in Table 2.2.
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Table 2.2: Features Extracted from Each ECG Segment

Category Features Characteristics Number

Time domain TCI, TCSC, STE,
MEA, Count 1–3,
Amplitude, MAV

Detect wide QRS tachycardia
with larger amplitudes

9

Frequency domain M, A2, FM, VF Leak Detect narrow-band, high fre-
quency, sine-wave like signals

4

Complexity measures LZ, SpEn Detect irregularity of signal 2
EMD LZ of IMF1–5 Help distinguish VF and VT 5
Phase space PSR, HILB Detect irregularity of signal 2
QRS beat detector RR interval statistics,

beat type
Used by clinicians during ECG
interpretation

5

TCI: threshold crossing interval; TCSC: threshold crossing sample count; STE: standard exponential; MEA:
modified exponential; MAV: mean absolute value; M, A2: spectral parameters; FM: central frequency; VF:
VF filter (VF leak); LZ: Lempel-Ziv complexity; SpEn: sample entropy; EMD: empirical mode decomposi-
tion; IMF: intrinsic mode function; PSR: time-delayed method (phase space reconstruction); HILB: Hilbert
transform;
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2.3.1 Time-Domain Features

Since the ECG signal is a quasi-periodic waveform, the amplitude of the signal varies

along with time. When its amplitude exceeds a threshold defined by us, this is called

threshold-crossing. Many time-domain features were based on some threshold crossing

related statistics. By definition, VF and VT are tachycardias with wide QRS complexes.

With a rapid heart rate, if the amplitude of the signal is large enough, it will cross an

amplitude threshold for more times than normal rhythms. Not only the counts of threshold

crossing will increase, but the numbers of the samples with values above the threshold

might also increase due to the widened QRS wave. This explained the basic ideas behind

this kind of features. Several variations of this idea were proposed by different authors,

but most of them mainly differed in the threshold chosen. Figure 2.3.1 summarized the

comparison of some threshold crossing-based methods.

Figure 2.3: Comparison of Threshold Crossing-Based Methods

Various threshold-crossing-based algorithms were different mainly in the threshold values chosen. For ex-
ample, TCI used a positive 20% threshold, TCSC considered both the positive and negative 20% thresholds.
STE, the standard exponential methods, used a time-varying threshold value based on an exponential curve
arising from the maximum peak in the observed window.

Threshold-Crossing Interval (TCI)

Threshold crossing interval was proposed in 1990 [44]. It measures the average duration

between two threshold-crossing pulses in a one-second segment of the ECG signal. For our

eight-second ECG segments, we split our ECG segment into eight one-second segments,

and calculate the TCI value for each of them. Then, their average was used as our TCI
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feature. The detailed calculation of TCI is as follows.

TCI =
1000

(N − 1) + t2
(t1+t2)

+ t3
(t3+t4)

Where N signifies the number of threshold crossing pulses in the one-second segment, and

the meaning of t1, t2, t3, and t4 are depicted in Figure 2.4. The number 1000 means 1000

milliseconds (one-second segment). According to previous studies, we set the threshold

value to 20 % of the maximum value within the one-second segment. From the equation,

one can see that if you have amore rapid heart rate andmost your QRS complexes are taller

than the 20 % threshold, you will have more threshold crossing pulses in the same time

period, which leads to a lower TCI value. Hence, this feature might be able to capture

rapid heart beats with larger amplitudes. A TCI value more than 400 ms was used to

exclude VF in previous study [44].

Figure 2.4: Threshold Crossing Interval (TCI) Calculation

Threshold-Crossing Sample Count (TCSC)

Very similar to the basic idea of TCI, but the authors proposing TCSC tried to improve it

in several ways [9].

• It considered both positive and negative threshold crossings.
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• It calculated the sample counts above the thresholds.

This not only reflects the amplitude of the peaks, it also correlates with their widths. With

a wide QRS complex, meaning a wide R or S parts, it takes more time for a rising R peak

to fall and the duration between the two threshold-crossing points created by the rise and

fall of a peak becomes longer. This results in more threshold-crossing samples. So the

threshold crossing sample count might be higher in wide QRS tachycardia. Before cal-

culating TCSC, the author proposed multiplying the ECG segment with a Tukey window

(referred to as a cosine window in the original paper). The cosine window can lower the

effects of incomplete ECG beat waveforms at both ends of the segment. The detailed steps

to calculate TCSC are as follows.

1. Multiply the ECG segment by a Tukey window w(t).

w(t) =



1
2
(1− cos(4πt)) 0 ≤ t ≤ 1

4

1 1
4
≤ t ≤ Ls − 1

4

1
2
(1− cos(4πt)) Ls − 1

4
≤ t ≤ Ls

where Ls is the length of the 3-second ECG segment.

2. Normalize the ECG signal by the absolute maximum in the segment.

3. Counting the percent of sample values greater than the threshold V0, which is set to

0.2 by this equation:

N =
Number of samples that cross V0

Total number of samples
× 100

4. Calculate seven N values using a 3-second moving window in the whole 8-second

ECG segment with a one-second step size, and then use their average as the TCSC

feature.
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Auxiliary Counts (Count1, Count2, Count3)

These features are named auxiliary counts by their creators[23]. From their names, it is not

obvious what they do. However, they are still similar to the threshold-crossing techniques

we just explained. One of the most obvious differences is the threshold used. Rather

than using a 20 % threshold, these auxiliary counts utilize some simple statistical values

obtained from the ECG segment. Before calculating the values, the ECG segment needs

to be preprocessed with a low-pass filter designed for a 250 Hz sampling frequency.

FSi =
14FSi−1 − 7FSi−2 +

Si−Si−2

2

8

Where Si is the i-th signal sample within the original signal S, and FSi is the i-th

sample point in the filtered signal FS.

Count 1, Count2, and Count3 then calculate the number of samples with amplitudes

within three different ranges, respectively.

• Count1 – Range: 0.5×max(AbsFS) tomax(AbsFS)

• Count2 – Range: mean(AbsFS) tomax(AbsFS)

• Count3 – Range: mean(AbsFS) -MD tomean(AbsFS) +MD

Where AbsFS = {|FS1|, |FS2|, |FS3|, . . . } and max(AbsFS), mean(AbsFS) and

MD (mean deviation) are computed for every 1-second time interval. From these formu-

las, one may notice their resemblance with TCSC or TCI. Count1 is essentially the number

of samples that cross the 50 % threshold. Rather than choosing a fixed percentage, Count2

and Count3 determine the thresholds based on mean and mean deviation (MD) of the ECG

segment in a one-second interval. The absolute values here make the auxiliary counts take

the negative peaks or valleys into account, just like what TCSC does. Since the original

algorithm is designed for use with a 250 Hz sampling rate, in our study, we resampled the

ECG segments to 250 Hz before calculating the auxiliary counts.
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Standard Exponential (STE) and Modified Exponential (MEA)

Standard exponential and modified exponential, documented by Amann et al. in 2005 [6]

are another two threshold-crossing based measures in the time domain. Instead of using a

fixed threshold value, as the names imply, their thresholds change over time as exponential

curves. For the standard exponential method, first, identify the largest peak in the ECG

segment. Then, use the peak as the starting point to draw a declining exponential curve and

calculate the number of intersections of the curve and the ECGwaveform. The exponential

function is defined as follows.

Es(t) = Mexp(−|t− tm|
τ

)

where M represents the global maximum amplitude of the signal and tm is the correspond-

ing time where the peak happens. Time constant τ is set to 3 seconds empirically in the

original study. The final intersection count is divided by the length of the signal for nor-

malization.

Modified exponential is a modified version of STE. Rather than using a fixed expo-

nential curve starting from the global peak, it draws the exponential curve from a local

maximum. Then, it tries to lift the curve again to the next local maximumwhenever a cross

happens during the exponential declining of its amplitude. Finally, calculate how many

times the exponential curve is lifted. The exponential function is also defined slightly

differently.

En,j =


Mjexp(− t−tm,j

τ
) tm,j ≤ t ≤ tc,j,

given ECG signal tc,j ≤ t ≤ tm,j+1

Mj denotes the amplitude of the j-th local maximum of the signal, and tm,j is its corre-

sponding time. The time constant τ here is set to 0.2 seconds.

The paper of Amann et al. did not mention the method they used to find the local

maximums. Hence, in this thesis, we use a simple method scipy.signal.argrelmax() im-

plemented in the scipy Python software package.
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Mean Absolute Value (MAV)

MAV is proposed by Anas et al. to distinguish VF and VT from other rhythms in 2010

[8]. As its name implies, it calculates the absolute strength or the mean of the absolute

value of a signal segment x(n) of length N as follows.

MAV =
1

N

N−1∑
n=0

|x(n)|

In the original paper, the author proposed a fixed numberN = 2 second×sampling rate (Hz).

(For example, for ECG signal from CUDB that has a sampling rate of 250 Hz, set N =

250 × 2 = 500 sample points.) Then, slide this window of size N with one-second step

through the whole ECG segment of length Le and get Le − 1 MAV values. Finally, cal-

culate the mean of these Le− 1MAVi values as follows and their averageMAVa can be

used as a feature to recognize VF and VT.

MAVa =
1

Le− 1

Le−1∑
i=1

MAVi

Amplitude (AMP)

Since fine VF is VF with an amplitude lower than 0.2 mV, to distinguish coarse VF from

fine VF, wemight need the peak-to-peak amplitude of the ECG segments. Moreover, these

ventricular arrhythmias originate from cardiac ventricles and had a distinct morphology

which sometimes have larger amplitudes than normal QRS complexes. Hence we tried to

include the amplitude of the ECG segment as a feature.

2.3.2 QRS Detector-Based Features

Using simple threshold crossing methods to reflect a rapid heart rate might not as precise

as it looks like. For example, when the T wave is gigantic, which might be seen during

ischemia, hyperkalemia, and other causes, threshold crossing count might also increase. If

we can know the exact position of every QRS complex, the result might be more accurate.

There were many different QRS complex detection algorithms with high sensitivity and
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specificity reported in the literature [16]. One of the popular and freely available solutions

was the open-source software package provided by Patrick S. Hamilton which can be

downloaded from the website of E.P. Limited (http://www.eplimited.com/) [19]. We

used it directly in this study.

RR Interval Statistics

In ECG reading, RR interval refers to the duration between two adjacent R peaks (the

unit is often millisecond). The more rapid the heart rate, the closer the R waves of the

adjacent heartbeats. Shorter RR intervals imply a more rapid heart rate. Besides, a normal

sinus rhythm has a nearly regular period and hence fewer variations in its RR intervals.

Arrhythmias, by definition, are irregular and have variable RR intervals. So variability

of RR interval might be an indicator of arrhythmias. For these reasons, we made two

features out of the average and standard deviation of RR intervals derived from the results

of QRS detection (denoted by RR and RR_Std in later sections). The value of the standard

deviation, however, is affected by the lengths of the RR intervals as well. With the same

degree of variability, larger RR intervals results in larger standard deviation of RR. To

overcome the problem, we also calculated the coefficient of variation of RR intervals

(referred to as RR_CV later), which is calculated by RR_CV = standard deviation of RR
mean RR . Note

that in some cases, such as when the amplitude of the signals is too low, the QRS beat

detector can fail and we cannot derive these values. In this case, we arbitrarily set RR,

RR_Std, and RR_CV to zero.

Beat Type Detection

The QRS detector not only detected the position of QRS complexes, but it also tried to

do simple beat type classification (normal, VPC, and unknown type). Since VPC beats

had wide QRS complexes, just like VF and VT, and VT was defined as three or more

consecutive VPCs with a heart rate faster than 100 BPM, knowing the beat types in the

ECG sample might be useful. Besides, VF beats were more disorganized and might be

recognized as an unknown beat type by the QRS detector sometimes. If we can leverage
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the simple beat detection results of the QRS detector, this might help make the distinction

between these abnormal rhythms. To reflect the idea, we calculated two features, unknown

beat ratio (UR) and VPC beat ratio (VR).

UR =
number of unknown beats detected

number of all beats detected

V R =
number of VPC beats detected
number of all beats detected

2.3.3 Frequency-Domain Features

In addition to morphology and other time-domain statistics, it is also possible to analyze

the power spectrum of the ECG signal in the frequency domain using Fourier transform.

Compared with normal sinus rhythm, ventricular fibrillation and tachycardias generally

have faster heart rates, so the main frequencies of them might be higher in the power

spectrum. Furthermore, the shape of VT and VF are closer to a sine wave than normal

sinus rhythms. This could result in narrower frequency bands in the power spectrum.

That is to say, Fourier transform of these ventricular arrhythmias might have different

shapes and distributions from that of other non-shockable rhythms. So we have a chance

to separate them in the frequency domain. Figure 2.5 demonstrated an example of Fourier

transforms of normal sinus rhythm compared with VF, showing their differences.

Figure 2.5: Fourier Transform of Normal Sinus Rhythm and VF
The amplitude spectrum on the left side is the Fourier transform of an ECG segment containing NSR. The

one on the right side is from a segment with VF. The spectrum of NSR is more broadband.
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VF filter (VF)

VF filter (VF)

VF filter, or VF leaks, was introduced in 1978 by SKuo andRDillman [29]. The technique

is based on the assumption that the shape of VF and VT are close to sine-waves. If you

shift a sine wave by half of its period, and then add it to the original wave, the whole

sine wave will be eliminated because after the phase shift, the peaks of the new sine wave

are located in the valleys of the original sine wave, and vice versa. That means, if you

have a waveform very similar to a sine wave, and you shift it by half of its period and add

the shifted waveform to itself, most of the original waveform will be eliminated. On the

contrary, if a waveform is not a sine wave like, which is the case of a normal sinus rhythm,

after this procedure, most of the original waveform cannot be eliminated and will ”leak”.

This technique is used to achieve the effect of central band elimination. The detailed steps

of calculating VF leak are hence as follows.

• Fourier transform of the original signal.

• Find the frequency bin at which the amplitude is the largest. This is the main fre-

quency of the signal.

• Derive the main period from the main frequency by 1
main frequency .

• Shift the original signal by half of the period, and add it back to the original signal.

• Calculate the VF leak value as follows.

V FLeak =

∑N−1
i=T/2 |Xi +Xi−T/2|∑N−1

i=T/2[|Xi|+ |Xi−T/2|]

Where N is the number of sample points, and T is the period.

Different from the original paper, before doing Fourier transform, we multiplied the ECG

signal by a Hamming window to do side-lobe suppression so we might have fewer ripples

in the spectrum, potentially improve its quality.
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Spectral Features (M, A2)

As just described previously, the spectrum of ventricular arrhythmias might have different

distributions compared with that of normal sinus rhythm in the frequency domain. Some

spectral parameters can be calculated to analyze the energy content in different frequency

bands [10]. Most normal rhythms tend to be broadband signal and their major harmonics

are up to around 25 Hz while VF might be concentrated in a band between 3 and 10 Hz.

The spectral parameters M and A2 can help reflect differences of distribution in the am-

plitude spectrum of the ECG signal. Before calculating these values, some preprocessing

is needed.

• Multiply the ECG segment by a Hamming window for side-lobe suppression.

• Perform fast Fourier transform of the windowed ECG signal to get its amplitude

spectrum

• In the frequency band 0.5 - 9 Hz, find the frequency of the component with the

largest amplitude (peak frequency, denoted by Ω).

• Set all amplitude values which are less than 5% of the amplitude of Ω to zero.

Then, the values M and A2 are calculated as follows.

M =
1

Ω

∑jmax

j=1 ajwj∑jmax

j=1 aj

where jmax is the index of the highest invested frequency, min(20 Ω, 100 Hz), in the

frequency bins. wj is the j-th frequency between the indices 1 and jmax, and aj is the

corresponding amplitude at frequency wj .

A2 =

∑imax

i=imin
ai∑jmax

j=jmin
aj

where imin and imax are the indices of frequency 0.7 Ω and 1.4 Ω, and jmin and jmax are

the indices of 0.5 Hz and min(20 Ω, 100 Hz) in the Fourier transform frequency bins.
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Central Frequency of Power Spectrum (FM)

Introduced in 1990 [15], the central frequency is the frequency coordinate of the center of

spectral mass of the power spectrum.

FM =

∑n
i=1 fipi∑n
i=1 pi

where fi is the i-th frequency component in the power spectrum of the ECG signal and pi

is the power of fi, and n is the number of frequency components in the power spectrum.

2.3.4 Complexity Measure-Based Features

Complexity measures can reflect the randomness of an ECG data sequence.

Lempel-Ziv Complexity (LZ)

In 1999, Zhang et al. demonstrated how to use the Lempel-Ziv complexity measure for

VF detection [49]. Originally developed by Lempel and Ziv in 1976 [31], the Lempel-Ziv

complexity measure quantitatively characterizes the complexity of a dynamical system.

By transforming the input data sequence into binary strings composed of 1 and 0, we can

search for repeating patterns in the sequence. The procedure used to convert ECG signals

into binary string are as follows.

1. Mean subtraction of the ECG signal

2. Find the positive peak V p and negative peak V n

3. Count the values of Pc and Nc which are the numbers of samples falling in the

range 0 – 10 % V p and 10 % V n – 0.

4. Define a threshold as follows.

Td =


0.0 if (Pc+Nc) < 40%n,

20%V p if Pc < Nc,

20%V n otherwise
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5. Convert the ECG signal to a binary sequence swith the threshold Td. Samples with

amplitudes less than Td were set to zero; set to one, otherwise.

Then we can calculate the Lempel-Ziv complexity of the finite binary sequence. The

algorithm is relatively simple. Let S and Q denote two binary strings. SQ means the con-

catenation of S and Q and SQπ denotes the string derived from deleting the last character

of SQ. (π represents the operation of deleting the last character from a string). Besides,

v(SQπ) is the set composed of all possible substrings of SQπ. Then the algorithm to

calculate Lempel-Ziv complexity can be summarized as the following pseudocode in Al-

gorithm 1.

Algorithm 1 Lempel–Ziv Complexity
Require: s being a binary sequence containing only 0 or 1 of length n

c(n)← 1
S ← s1
Q← s2
i← 2
repeat
if Q ∈ v(SQπ) then
S does not change
Q← Qsi+1

else
c(n)← c(n) + 1
S ← SQ
Q← si+1

end if
i← i+ 1

until i = n
b(n)← n/ log2 n
C(n)← c(n)/b(n)
return C(n)

To make the code cleaner and easier to understand, we did not follow some of the

notations in the original paper and tried to present the algorithm in a slightly different

way, but the logic and final operations being done remained unchanged.

Empirical Mode Decomposition (EMD)

To achieve better multiclass classification, we needed some features to distinguish ven-

tricular fibrillation from ventricular tachycardia. According to the report from Xia et al in
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2014 [48], this might be achieved by calculating the Lempel-Ziv complexity on the results

of empirical mode decomposition (EMD) instead of on the original ECG signals. Empir-

ical mode decomposition was proposed by Huang et al. in 1998 [21]. It can decompose

the original signal into a set of intrinsic mode functions (IMFs). An IMF is a function that

satisfies two conditions. 1. In the whole data set, the number of extrema and the number

of zero crossings must either equal or differ at most by one 2. At any point, the mean value

of the envelope defined by the local maxima and the envelope defined by the local minima

is zero [21]. Figure 2.6 provided a simplified depiction of EMD calculation.
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Figure 2.6: Steps of Empirical Mode Decomposition

The first figure is the original signal. In the second step, the upper and lower envelopes and their mean were
calculated. In the next step, the first intrinsic mode function (IMF) was obtained by subtracting the mean
of envelopes from the original signal. Then, in the last step, the IMF was removed from the original signal
and the remaining part was called residual. Repeating these steps for several iterations, the original signal
could be decomposed into a set of IMFs.

The detailed steps to derive IMFs for an ECG signal segment are as follows.

1. Given an input signal x(t), generate its upper envelope eu(t) by connecting all of

the maxima with cubic spline interpolation. Similarly, generate the lower envelope

el(t) with local minima.
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2. Calculate the local mean:

m(t) =
(eu(t) + el(t))

2

3. Subtract the local meanm(t) from the original signal and get

g(t) = x(t)−m(t)

4. Check if g(t) satisfied the two conditions mentioned above to determine if it is an

IMF.

5. If g(t) is not an IMF, repeat the previous steps 2 – 4 until an IMF is obtained.

6. To find the next IMF, subtract the current IMF g(t) from the signal x(t) to get the

residue r(t). Set x(t) = r(t) and repeat the whole process again.

Xia et al suggested in their paper that IMF1 and IMF5 were better for discriminating VF

and VT among the IMFs they have tested. However, because of differences in experimen-

tal settings, our results might not be the same as theirs, so we extracted IMF 1 – 5 and put

all of them into our feature vectors for testing. Calculating the complexity of the IMF is

only one of the methods to leverage EMD. There still exist other ways to extract features

with EMD [8].

Sample Entropy (SpEn)

Sample entropy measures the rate of information production. It is based on the conditional

probability that two sequences remain similar at the next point given they are already

similar for m points [32] [42]. In other words, this indicates how predictable a sequence

is. To calculate the entropy value, we need to take the negative logarithm of the conditional

probability. So the less probable that the sequences remain similar at the next point, the

more their randomness and entropy. The sample entropy of an ECG signal time series of

N points {u(i) : 1 ≤ i ≤ N} can be calculated using the following steps described by Li

et al. in their paper using dynamic sample entropy to detect VF [32].
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1. Select a pattern lengthm to constructm-dimensional vectors: X(1), X(2), . . . , X(N−

m + 1) Where X(i) = {u(i), u(i + 1), . . . , u(i +m)}. This essentially generates

N −m+ 1 overlapping subsequences of the original ECG segment using a sliding

window of sizem and a step size of one sample point.

2. Define the distance measure between X(i) and X(j):

d[X(i), X(j)] = max
k=0∼m−1

|u(i+ k)− u(j + k)|.

This measures how different two subsequences X(i) and X(j) are.

3. Give a threshold distance r, construct Cm
i (r) for each {i : 1 ≤ i ≥ N −m+ 1} :

Cm
i (r) =

∑N−m+1
j=1 ϕ(i, j)

N −m
,

Where

ϕ(i, j) =


1, if d[X(i), X(j)] < r

0, otherwise

ϕ(i, j) can be viewed as a similarity score for X(i) and X(j). If the max distance

between these two vectors is smaller than the threshold distance r, we consider them

similar and they get a score of 1. Otherwise, 0 is given if the difference of the two

sequences exceeds our tolerance r. Then Cm
i (r) calculates how many in the other

N −m subsequences (denoted by X(j)) are similar to a given subsequence X(i),

which reflects the probability that the other subsequenceX(j) is similar to the given

subsequence X(i).

4. Average Cm
i (r):

ϕm(r) =
1

N −m+ 1

N−m+1∑
i=1

Cm
i (r)

ϕm(r) basically estimates the probability that any pairs of the N − m + 1 subse-

quences are similar when a tolerance threshold r is given.

5. m→ m+ 1, repeat above process to get ϕm+1(r)
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6. Sample entropy:

SampEn(N,m, r) = lim
n→∞
{− ln

ϕm+1(r)

ϕm(r)
}

We already have ϕm(r). When given one more data point per subsequence, we

can calculate another probability ϕm+1(r). Then sample entropy can be used to see

how close they are. It is obvious from the formula that if ϕm(r) and ϕm+1(r) are

identical, then the entropy will be zero, which means ”not random at all”.

The original paper imposed a sampling rate of 250 Hz and only used 1250 sample points

to calculate the sample entropy value. So we followed the steps, resampled our ECG

segment to 250 Hz, and only took the last 1250 sample points. This corresponded to the

last five seconds of the whole 8-second ECG segment.

2.3.5 Phase Space Reconstruction

Proposed by the same authors consecutively, time-delayedmethod [7] andHilbert transformation-

basedmethod [5] both exploited the relationship between an ECGwaveform and its shifted

version. This can be achieved with a 2-dimensional scatter plot. The X axis value of each

point in the scatter plot is the amplitudes of the original signal samples, and its Y value is

the amplitude of a shifted version of the same signal. This procedure is called phase space

reconstruction. If the signal is quite regular, the scattered points should mostly be con-

fined in some limited clusters on the plot. Otherwise, if the signal is completely irregular,

just like the case of VF, the points in the phase space plot might spread over the whole

plot randomly.

The main difference between these two methods is in the way they generate the shifted

signal.

Time-Delayed Method (PSR)

The time-delayed method generates a shifted version of the original signal by delaying it

for 0.5 seconds. So it is named time-delayed method [7]. Figure 2.7 is a demonstration of
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two phase space plots generated for normal sinus rhythm and VF with the time-delayed

method.

Figure 2.7: Phase Space Reconstruction for NSR and VF
The phase space plot on the left side is generated from an NSR ECG segment, and the other one is from

VF.

Hilbert Transformation (HILB)

Hilbert transformation is a mathematical tool used in signal processing to generate the so-

called analytical signals. The result of Hilbert transform is a sequence of complex numbers

whose imaginary part contains a variation of the original signal of the same amplitude with

the phase shifted by π
2
. So this shifted signal can be used for generating the phase space

plot [5].

After generating the phase space plot, both methods make the scatter plot into a 40×40

grid and calculate how many cells in the grid are visited by the scattered data point. Then

the proportion of the visited cells in the all 1600 cells can be used as a feature to detect

VF.

2.4 Machine Learning Algorithms for Classification

After extracting adequate features from the original ECG segments, we needed a ma-

chine learning algorithm to perform the final classification task and to make the correct

shock/no-shock decision. We utilized the well-knownmachine learning algorithm support

vector machine (SVM). In this section, we briefly introduced how the SVM algorithm
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works.
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2.4.1 Soft Margin Support Vector Machine (SVM)

Originally named support vector network and proposed by Cortes and Vapnik in 1995

[12], the support vector machine algorithm is a machine learning model with high gener-

alization ability. It features mapping the input vectors to a very high-dimensional space

in which a linear decision surface is constructed [12, 20]. Figure 2.8 demonstrated the

basic idea behind SVM. For better noise tolerance, SVM tries to find an optimal separat-

ing hyperplane between two different classes with the largest margin. As depicted in the

figure, the margin in SVM refers to the minimal distance from all of the sample points to

the hyperplane. We only need the vectors which are closest to the hyperplane, the support

vectors, to define an optimal separating hyperplane with a large margin.

Figure 2.8: An Example for Support Vector Machine

In the real world, not all of the classification problems are natively linearly-separable.

Performing non-linear transformation on the features to map them into a higher dimen-

sional space might help in this case. Figure 2.9 is a simple example showing the effect

of non-linear transformation. The original problem on the left panel was not linearly-

separable. Find a straight line separating the data points of these two different classes in

the original space was not possible. However, after transforming the x and y to x2 and y2,

38



doi:10.6342/NTU201602152

Figure 2.9: An Example of the Effect of Non-linear Transformation

the binary classification problem became linear-separable.

In a high dimensional space, distance from a point zi to a hyperplane wTx+ b = 0 can

be calculated by 1
∥w∥∥w

T zi + b∥. Finding the optimal hyperplane with the largest margin,

therefore, becomes an optimizing problem finding thew and b to maximize 1
∥w∥∥w

T zi+b∥

for each sample point zi.

For a binary classification problem, given pairs of (xi, yi), i = 1, . . . l, where xi ∈ Rn

and y ∈ {1,−1}l, after mapping xi into a high dimensional space by zi = ϕ(xi), the

distance from zi to the separating hyperplane becomes 1
∥w∥∥w

T zi + b∥. Since yi = +1

whenwT zi+b > 0 and yi = −1whenwT zi+b < 0, this can be changed to 1
∥w∥yi(w

T zi+b).

Finding the maximum of this equation correspond to finding the minimum of wwT .

Then, SVM requires the solution of the following primal optimization problem.

min
w,b,xi

1

2
wTw + C

l∑
i=1

ξi

subject to the constraints

yi(w
T zi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , l
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Where zi is the non-linear transformation mapping the original feature vectors xi to a high

dimensional space by zi = ϕ(xi). ξi is the loss, and C is the regularization parameter.

The term ξi exists here because in practice we may want to allow some points to violate

the restriction of large margin. This is called soft-margin SVM. C
∑l

i=1 ξi is essentially

the penalty given for points whose distances to the separating hyperplane are less than the

large margin we want.

This primal optimizing problem with constraints can be solved by converting it to a

Lagrangian dual problem.

max
αi

N∑
i=1

αi −
1

2

N∑
i,j=1

αiyiαjyjK(xi, xj)

subject to the constraints 0 ≤ αi ≤ C and
∑N

i=1 αiyi = 0 where the kernel function

K(xi, xj) = ϕ(xi)ϕ(xj) = zizj and αi are the Lagrange multipliers. For a high or even

infinite dimensional transformation, it will be impractical to do the non-linear transfor-

mation directly by zi = ϕ(xi) for each sample point. Hence a computation shortcut, the

kernel functionK(xi, xj), is introduced. With some mathematically proven special prop-

erties, these kernel function enable computation of the dot product ϕ(xi)ϕ(xj) in the high

dimensional space directly from within the low dimensional space of x. The kernel func-

tion used in this study is the well-known Gaussian kernel, or radial-basis function (RBF)

kernel.

K(xi, xj) = exp(−γ∥xi − xj∥2)

Using Tayler expansion, this corresponds to the dot products of non-linear transformation

ϕ(x) = exp(−γx2)[1,

√
2γ

1!
x,

√
(2γ)2

2!
x2,

√
(2γ)3

3!
x3, . . . ]T

which is effectively a mapping of x into an infinite dimensional space.

With the RBF kernel function, SVM can find an optimal separating hyperplane in a

high dimensional space for our binary classification problems. A special case of the kernel

function trick is the linear kernel, which is simply the dot product in the original space.
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2.4.2 Multiclass Support Vector Machine

The original SVM is intended to solve binary classification problems. To extend it for use

with multiclass classification scheme, one can use the one-versus-one or one-versus-rest

strategies [20]. The one-versus-one strategy split the multipleK classes into K(K−1)
2

pairs

of two classes, and then perform binary classification for each of them separately. Finally,

use a majority vote within all of the binary classifiers to determine the final class each

sample point should belong to. The one-versus-rest strategy works slightly differently.

Instead of splitting theK classes into pairs, it createsK binary classifiers for each class C

to predict whether a sample x belongs toC or not. Then, let allK binary classifiers vote to

determine the most likely class of a sample point. In this study, we use the one-versus-one

strategy according to the suggestion in the paper of Hsu and Lin [20].
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2.5 Performance Evaluation

Several performance metrics were frequently used when evaluating classification perfor-

mance [36].

• Sensitivity (also named recall, or true positive rate):

Sensitivity =
true positive

true positive+ false negative

In the settings of AED performance evaluation, this measures how many of the

shockable rhythms are correctly identified by the algorithm as shockable [28].

• Specificity (or true negative rate):

Specificity =
true negative

true negative+ false positive

Patients with non-shockable rhythms should not be delivered shocks. This metric

evaluates how specific the algorithm is, that is, non-shockable rhythms are correctly

classified as non-shockable.

• Precision (also called positive predictive value):

Precision =
true positive

true positive+ false positive

In the settings of AED, this corresponds to whenever the algorithm make a shock

decision, how many of these decisions are correct.

• Accuracy:

Accuracy =
true positive+ true negative

true positive+ true negative+ false positive+ false negative

This measures the overall accuracy. That is, in all of the decisions being made by

the algorithm, including both shock and no-shock, how many of them are correct.

However, for an unbalanced dataset, accuracy is not an ideal evaluation tool. If a
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class has much more samples than the other, it can dominate the result of accuracy.

For example, in the MITDB, more than 90% of the rhythm samples do not contain

VT or VF and belong to the non-shockable class. Therefore, if a classifier always

gives a constant prediction of ”no shock” regardless of the ECG data, it can still

have an accuracy of around 90 % even it did not correctly identify any one of the

shockable rhythms. So care must be taken when evaluating the algorithms for AEDs

and simply reporting the accuracy of the classification algorithm is flawed in this

case.

• F1-measure:

F1 score =
1

1
precision

+ 1
recall

= 2× precision× recall

precision+ recall

This is the harmonic mean of recall and precision. Though it is not one of the perfor-

mance goals required by the AHA, we used it as a metric to evaluate our classifiers

since it can take both recall and precision into account at the same time. This score

is for binary classification. Since we did multiclass classification with SVM us-

ing a one-versus-one strategy, each binary classifier used internally to separate two

classes generated an F1 score. We used the unweighted average of these F1 scores

as the final score to evaluate the results of multiclass classification.

2.5.1 AHA Recommendations for Reporting Performance

The AHA required reporting some performance metrics of the algorithm being evaluated.

It also had different performance goals for different types of cardiac rhythms, which were

summarized in Table 1.1. In addition, manufacturers should specify amplitude criteria sep-

arating fine VF and asystole. Since whether the patients with intermediate rhythms (fine

VF and slower VT) could benefit from a shock was uncertain, the AHA guideline did not

define a performance goal for this class. Simply reporting the sensitivity or specificity

of the classification algorithm was considered enough [28]. Therefore, when calculating

the sensitivity and positive predictive values for the shockable rhythms or specificity for
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the non-shockable rhythms, the samples from the intermediate class were not included

in the calculation. This was explained in more details in Table 3 of the AHA guideline

[28]. When specifying the minimal number of testing samples, a sample referred to data

required to make a single shock/no-shock decision. The AHA also stated that ”The evalu-

ated algorithms may examine different rhythms recorded from the same patient. However,

there can be only one sample of each specific rhythm from each patient [28].”

2.6 Parameter Tuning for Performance Optimization

Because the dataset was unbalanced and the number of non-shockable samples was much

more than that of shockable ones, we applied class weighting when training the SVM

classifier. To find the best C and γ parameters for the SVM classifiers, we conducted a

grid search in various combinations of different parameter values. Then we used five-

fold cross-validation to select the parameters that gave rise to the best F1 score during

cross-validation.

2.7 Testing the Machine Learning Classifier

To correctly evaluate the performance of the machine learning classifiers, we randomly

split the whole ECG dataset into a training set and testing set with a 70 % and 30 % ratio.

Only the samples in the training dataset were used to train the classifiers. After the training

process was completed, the trained classifiers were then tested against the test dataset. The

AHA guideline did not specify the minimal requirement for the number of tests. In this

study, the above testing process was repeated for 100 iterations, and the average values of

the performance metrics were reported.

2.8 Implementation of the System

Our system was mainly implemented using Python 3.5.1 x86-64. The numerical calcula-

tions and signal processing parts leveraged numpy 1.11 and scipy 1.9. The wfdb software
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package and its library provided by Pysionet.org were used to read the ECG signals and

annotations from the databases. To speed up preprocessing and feature extraction, this part

was written entirely using Cython, an extension to Python which facilitates the building of

C language-based Python extensions. The Lempel-Ziv complexity algorithm was written

in plain C language for performance reasons. Also, joblib and Pyro4 Python packages

were used to build distributed and paralleled feature extraction. Last, the machine learn-

ing classifiers were provided by the sklearn python package whose SVM support is based

on libsvm. The experiments in this study were carried out in Arch Linux system (kernel

4.5.1 x86-64) on a personal computer with an Intel Core i7-3770 CPU (3.40GHz) and 16

gigabytes of memory. All of the source code associated with the study was released under

GNU General Public License (GPL) v3.0 and can be freely downloaded from the URL

http://github.com/PCMan/vf_classifier. Reusing the code in other related researches

is welcomed and any citations to our work are appreciated.
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Chapter 3

Results

3.1 Dataset Composition

Information about the datasets included in this study was summarized in Table ??. A

total of 84027 non-overlapping ECG segments of 8-second duration from 296 different

records were enrolled in our study. The MITDB did not contain any sample of VF. The

VFDB had several cases of VF and VT, but as mentioned in section 2, we excluded its

VT samples because of lack of beat annotations. The CUDB mainly contained cases of

atrial fibrillation (AF), NSR, and VF. Most of the non-shockable rhythms in our dataset

came from the EDB. Though the EDB is originally collected for testing the algorithms

analyzing ST-T segment changes, it included various types of non-shockable rhythms with

complete beat and rhythm annotations, which was also suitable for our application. Last,

86 segments of coarse VF and 47 segments of fine VF along with 11 rapid VT segments

were taken from the lead II signal of MGHDB, making our test dataset more diverse. All

rhythm types required by the AHA are covered by the dataset we compiled. Other types

of non-shockable rhythms not explicitly required by the guideline were also included for

completeness.
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Table 3.1: Statistics of the Datasets Included in the Study

Rhythm type mitdb vfdb cudb edb mghdb total
samples records samples records samples records samples records samples records samples records

Atrial bigeminy 9 1 0 0 0 0 6 1 0 0 15 2
Atrial fibrillation 890 8 382 2 47 2 155 1 0 0 1474 13
Atrial flutter 58 3 0 0 0 0 0 0 0 0 58 3
Asystole 0 0 92 6 0 0 0 0 726 3 818 9
Ventricular bigeminy 183 7 58 2 0 0 15 4 0 0 256 13
First degree heart block 0 0 514 3 0 0 0 0 0 0 514 3
Second degree heart block 85 1 0 0 0 0 0 0 0 0 85 1
High grade ventricular ectopic activity 0 0 108 3 0 0 0 0 0 0 108 3
Idioventricular rhythm 16 2 0 0 0 0 0 0 0 0 16 2
Normal sinus rhythm 6613 42 2082 15 3 2 69252 90 0 0 77950 149
Nodal (A-V junctional) rhythm 14 3 216 3 0 0 0 0 0 0 230 6
Paced rhythm 757 4 181 1 0 0 0 0 0 0 938 5
Pre-excitation (WPW) 39 1 0 0 0 0 0 0 0 0 39 1
Sino-atrial block 0 0 0 0 0 0 1 1 0 0 1 1
Sinus bradycardia 193 1 3 1 0 0 125 3 0 0 321 5
Supraventricular tachyarrhythmia 16 3 186 3 0 0 0 0 0 0 202 6
Ventricular trigeminy 92 8 0 0 0 0 22 3 0 0 114 11
Ventricular escape rhythm 0 0 5 1 0 0 0 0 0 0 5 1
Ventricular fibrillation (coarse) 0 0 292 6 368 33 0 0 86 3 746 42
Ventricular fibrillation (fine) 0 0 0 0 0 0 0 0 47 3 47 3
Ventricular tachycardia (rapid) 15 1 54 6 2 1 0 0 4 2 75 10
Ventricular tachycardia (slow) 1 1 1 1 0 0 0 0 8 2 10 4
Total 8981 86 4174 53 420 38 69576 103 871 13 84022 293

Each sample here refers to an 8-second ECG segment. As stated in section 2.1, the VT rhythms in VFDB
without heart rate information were excluded. Besides, all NSR rhythms from CUDB were also excluded.
The one slow VT sample of VFDB and three NSR samples in CUDB shown here are generated during our
manual correction of labels.
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As mentioned in section 2.2.4, we tried to manually correct some obvious errors found

in the original datasets. Overall, the labels of 747 samples were modified and 87 samples

were excluded because of severe artifacts causing difficulty in recognizing their actual

rhythm classes. All of the details about the correction were available from the open-source

software package we provided (file name: corrections_s8.txt).

3.2 Performance of Classifiers

In addition to SVM with RBF kernel, we also tested other two linear classifiers linear

SVM and the traditional logistic regression, for comparison. Based on the performance

metrics suggested by AHA recommendations for AED, the average performance of 100

testing iterations of our machine learning approach was summarized in Table 3.2. A high

sensitivity up to 93.21 % for detecting the shockable rhythms, namely VF and rapid VT,

was achieved while preserving good precision (89.28 %). That means, out of all the shock

decisions made by the algorithm, about 90 % were correct. As summarized in Table 1.1,

the AHA guideline for AED set up minimal requirements for the sensitivity of coarse

VF and rapid VT rhythms, which were at least 90 % and 75 %, respectively. Also, for

patient safety, a high specificity was required for the non-shockable rhythms. In our tests,

the performance of our machine learning approaches exceeded these requirements. There

were no performance goals for the intermediate rhythms. We reported them along with

the detailed performance metrics of the multiclass classification in Table 3.3.
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Table 3.2: Performance for Making the Shock/No-shock Decision Based on the Recom-
mendations of the AHA

SVM-RBF, % SVM-linear, % Logistic regression, % AHA Requirement, %

Sensitivity
all shockable rhythms 93.21% 92.41 91.62

Coarse VF 93.33 93.13 92.20 > 90
Rapid VT 92.14 85.29 86.16 > 75

Precision
all shockable rhythms 89.28 81.92 82.76

Specificity
all non-shockable rhythms 99.88 99.80 99.81
Atrial bigeminy 100.00 100.00 98.99
Atrial fibrillation 99.69 99.73 99.70 > 95
Atrial flutter 99.89 100.00 100.00
Ventricular bigeminy 99.22 98.79 98.90
First degree heart block 100.00 100.00 100.00 > 95
Second degree heart block 100.00 100.00 100.00 > 95
High grade ventricular ectopic activity 89.33 86.12 86.19
Idioventricular rhythm 100.00 100.00 100.00 > 95
Normal sinus rhythm 99.91 99.83 99.84 > 99
Nodal (A-V junctional) rhythm 99.70 99.73 99.69
Paced rhythm 99.90 99.90 99.88
Pre-excitation (WPW) 100.00 100.00 100.00
Sino-atrial block 24.00 23.23 31.31
Sinus bradycardia 99.64 99.28 99.09 > 95
Supraventricular tachyarrhythmia 97.36 96.96 96.96 > 95
Ventricular trigeminy 100.00 100.00 100.00
Ventricular escape rhythm 70.25 77.61 70.03

SVM-RBF is SVM classifier with RBF (or Gaussian) kernel. SVM-linear is SVM classifier using a linear
kernel function. The numbers presented in this table are all percentages.
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Table 3.3: Detailed Performance Report of the Multiclass Classification Tests

SVM-RBF, % SVM-linear, % Logistic Regression, %

Shockable Rhythms
Sensitivity 93.21 92.41 91.62

Specificity 99.86 99.77 99.78
Precision 86.94 79.94 80.95
Sensitivity of coarse VF 93.33 93.13 92.20
Sensitivity of rapid VT 92.14 85.29 86.16

Intermediate Rhythms
Sensitivity 41.24 50.68 53.54
Specificity 99.96 99.88 99.88
Precision 44.20 23.22 24.70
Sensitivity of fine VF 46.38 53.82 59.27
Sensitivity of slow VT 18.38 33.32 29.70

Non-shockable Rhythms
Sensitivity 99.88 99.74 99.75
Specificity 95.38 97.84 97.43
Precision 99.95 99.98 99.97

Average F1 score
Cross Validation 77.35 73.09 73.56
Testing 77.38 72.33 73.03

SVM-RBF is SVM classifier with RBF (or Gaussian) kernel. SVM-linear is SVM classifier using a linear
kernel function. The numbers presented in this table are all percentages.
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Chapter 4

Discussions

The results in Table 3.2 and Table 3.3 revealed that most of the instances of shockable and

non-shockable rhythms were correctly classified with quite decent recall and precision

values. However, there were still some areas where the algorithm did not perform well.

The intermediate rhythm class, including fine VF and VT with slower heart rate, tended to

be unrecognized with a sensitivity lower than 50 %. On the other hand, the classification

algorithm had nearly 100 % specificity in most subtypes of non-shockable rhythms, but it

performed badly when the ECG sample being recognized contained sino-atrial block. It

also had lower specificity values for high-grade ventricular ectopic activity and ventricular

escape rhythms. Hence we conducted error analysis for these special cases to figure out

the causes of lower performance.

4.1 Error Analysis

During the 100 testing iterations, 39 out of the all 83204 samples were always wrongly

classified by our algorithm every time. We herein focused on the analysis of these cases.

The detailed results were presented in Table 4.1.
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Table 4.1: Detailed Analysis for the ECG Samples with Most Frequent Prediction Errors
Record Time Rhythm Predicted Possibly Reasons for the Error

Non-shockable
cudb/cu09 00:07:55 AF shockable severe baseline wander, also suspect AF with aberrancy?
cudb/cu09 00:08:03 AF shockable same as above
cudb/cu09 00:08:11 AF shockable same as above
vfdb/430 00:09:36 HGEA shockable poor quality, uncertain class
vfdb/610 00:09:32 HGEA shockable incorrect label (contains short-run VT)
vfdb/418 00:16:22 NSR shockable incorrect label
vfdb/419 00:19:24 NSR shockable poor quality
vfdb/419 00:21:00 NSR shockable poor quality
edb/e0305 00:15:58 NSR shockable high level of noise, causing higher sample entropy and TCSC
edb/e0305 00:16:06 NSR shockable same as above
edb/e0305 00:16:54 NSR shockable same as above
edb/e0305 00:17:02 NSR shockable same as above
edb/e0305 00:18:30 NSR shockable same as above
edb/e0305 00:19:02 NSR shockable same as above
edb/e0305 00:19:58 NSR shockable same as above
vfdb/602 00:32:40 paced rhythm shockable poor quality
vfdb/426 00:30:24 SVT shockable poor quality, VT-like morphology, high TCSC, PSR, and complexity
vfdb/426 00:30:47 SVT shockable same as above
Shockable
vfdb/418 00:00:08 coarse VF non-shockable low frequency noise, causing incorrect spec parameters
cudb/cu12 00:05:41 coarse VF non-shockable severe artifacts, making it broad-band and have wrong thresholds
cudb/cu20 00:08:20 coarse VF non-shockable severe baseline wander
mghdb/mgh041 01:04:33 coarse VF intermediate low frequency noise, causing incorrect spec parameters, large variations of thresholds
mghdb/mgh041 01:04:57 coarse VF non-shockable severe artefacts
mghdb/mgh041 01:05:29 coarse VF non-shockable same as above
mghdb/mgh041 01:18:17 coarse VF non-shockable same as above
mghdb/mgh041 01:23:45 coarse VF non-shockable same as above
mghdb/mgh229 01:12:56 coarse VF intermediate low amplitude: 0.2 mV (borderline between coarse and fine VF)
mghdb/mgh229 01:16:08 coarse VF intermediate same as above
mghdb/mgh046 00:15:18 rapid VT non-shockable 1/3 predicted as shockable, 2/3 non-shockable, too regular
Intermediate
mitdb/205 00:24:26 slow VT non-shockable looks like NSR, most features are within normal ranges
vfdb/419 00:01:01 slow VT non-shockable 25% predicted as shockable, 75% non-shock, high PSR value, VF-like morphology
mghdb/mgh046 00:15:50 slow VT non-shockable incorrect label?
mghdb/mgh046 00:16:22 slow VT non-shockable incorrect label?
mghdb/mgh046 00:16:30 slow VT non-shockable severe artifacts
mghdb/mgh040 01:14:01 fine VF shockable no obvious distinction with coarse VF in morphology (only the amplitude is different)
mghdb/mgh040 01:14:25 fine VF shockable same as above
mghdb/mgh040 01:15:53 fine VF shockable same as above
mghdb/mgh041 00:52:25 fine VF non-shockable artifacts, low frequency noise affecting spectral analysis
mghdb/mgh041 01:18:25 fine VF non-shockable same as above
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4.1.1 Common Causes of Errors

From the above detailed error analysis, we summarized the common causes of classifica-

tion errors in Table 4.2.
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Table 4.2: Common Causes of Classification Errors

Low frequency noise or severe baseline wanders
Large variations in amplitudes
High frequency noise
Borderline cases
Labelling errors
Non-shockable wide-QRS tachycardia
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Low-frequency noise or severe baseline wanders could break frequency-domain fea-

tures. Although we applied a high-pass filter during preprocessing, it was not perfect and

some severe low-frequency noise and baseline wander could not be removed. In this case,

after Fourier transform, the spectrum in the frequency domain might have large amplitude

in low frequency components, changing the distribution of the power spectrum. Features

relying on the characteristics of the spectrum, such as the spectral parameters M and A2,

and VF leak were quite vulnerable to this kind of noise. Since they tried to identify the

frequency at which the amplitude is largest, they could easily find the wrong peak in this

case. Figure 4.1 demonstrated this kind of error.

Figure 4.1: Severe Baseline Wander Could Break Frequency Domain Features

Large variations in amplitudes happened when the ECG segment contained several

PVCs at different points or some high spikes of artifacts. Severe baseline wander with

imperfect filtering might also cause this condition. Methods relying on threshold crossing

were affected by large variations in amplitudes since the threshold was either determined

by a fixed percentage of themaximumor by some statistics based on themean and standard
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deviation, like the auxiliary counts. To overcome this problem, when calculating these

features, the average of multiple values calculated using a moving window was used, but

this could not eliminate all of the errors. The Lempel-Ziv complexity feature might also

be affected since the procedure converting the ECG signal to a binary sequence also relied

on a threshold crossing mechanism.

Different from the case in low-frequency noise, high-frequency noise mainly affected

complexity measures. When the ECG segments contained irregular high-frequency noise

that could not be fully removed by the low-pass filter, both the Lempel-Ziv complexity

and sample entropy might increase rapidly as these saw-tooth like noise greatly increased

the irregularity of the original ECG waveform. In addition, this also affected frequency

domain based methods since high-frequency noise from various sources mixed together

could make the signal broad-band, mimicking the characteristics of the normal ECG signal

in the frequency domain. Figure 4.2 was an example of this case.

Figure 4.2: High-Frequency Noises Increased Randomness of the Signal and Could Make
Non-shockable Rhythms Look Like VF
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On the contrary, severe high-frequency noise might also make VF mimicking NSR in

the frequency domain by making it a broad-band signal as shown in Figure 4.3

Figure 4.3: High-Frequency Noises and ArtifactsMightMake a VF Rhythms Broad-band,
Mimicking NSR in the Frequency Domain

Though belonging to different classes, coarse VF and fine VF were merely different in

their amplitudes. After normalization of the signal, there was no way to distinguish them

based solely on morphology. We have included the amplitude in the feature set to capture

this difference, but in some borderline cases whose amplitude were around the 0.2 mV

cut-off, it could either be classified as shockable or as intermediate.

The ECG databases used in this study were also widely used in previous researches and

examined by different researchers, but they were still far from perfect. During our error

analysis, we found various errors in the annotations provided by these public databases.

The author tried to correct part of them as stated in section 2.2.4, but doing an exhaustive

search for all errors manually was not feasible given the limited resources we have. Some

ECG segments with poor quality and obvious artifacts were not marked as such. For
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example, the record 429 in VFDB and some segments in record cu09 of CUDB had this

kind of problems. Moreover, some ECG segments annotated as non-shockable rhythms

actually contained VT of VF. For instance, the records 418 and 419 in VFDB were known

to have errors. Figure 4.4 was an ECG segment with suspected ventricular arrhythmia

from record 418 of VFDB which was annotated as NSR.

Figure 4.4: An ECG Segment with Ventricular Arrhythmia was Wrongly Marked as NSR
in the Original Dataset

Moreover, there were some rhythms which natively have a VF/VT-like morphology.

For instance, supraventricular tachycardia (SVT) and atrial fibrillation (AF) are arrhyth-

mias with rapid heart rates. When they coexisted with widened QRS complexes due to

aberrancy of conduction, as shown in Figure 4.5, it could be hard even for human eyes to

distinguish them from VT [1]. This kind of error was inevitable sometimes.
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Figure 4.5: Atrial Fibrillation with Pre-existing Left Bundle Branch Block Might Mimic
VT
The ECG image was by courtesy of Dean Jenkins and Stephen Gerred (http://www.ecglibrary.com/).

4.1.2 Special Cases

Sino-atrial Block

From Table 3.1, we could see there was only one sample with this rhythm type. Further

examinations of our test results revealed that the sample was only included in the test

dataset in 24 % of the 100 iterations. Since it was the only one sample in this rhythm

class, for the rest of 76 % iterations the specificity values for sino-atrial block was not

applicable. When calculating the average specificity for it, these iterations need to be

excluded and the correct average specificity became 100 %.

High-Grade Ventricular Ectopic Activity

In the publicly available ECG databases, there were ECG rhythm segments marked as

high-grade ventricular ectopic activity. In our study, we labeled them as non-shockable

rhythms. This labeling, however, has some potential problems. The Lown’s grading cri-

teria for ectopic ventricular beats appeared in 1971 as a tool to evaluate the prognosis of

post-myocardial infarction patients [34]. The grading system defined six grades for clas-

sifying ventricular ectopic beats. There was no universal definition for ”high-grade”, but

a research published in 1987 referred to Lown grade 4a, 4b, and 5 as high-grade [46]. The

definition of grade 4b earlier actually corresponded to the term non-sustained VT nowa-

days. In other words, in these ECG segments, some actually contained episodes of VT

and should be classified as intermediate rhythms instead. Due to the lack of more detailed

information from the original datasets, it will require the help of cardiologists to correct

these annotations manually. It was acceptable for our algorithms to make mistakes on

these samples.
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4.2 Potential Roles of Linear Models

While recent researchers seemed to focus more on powerful and complicated newmachine

learning approaches most of which are non-linear, we demonstrated that it was actually

feasible to build a quite decent ventricular arrhythmia detection system for AED with a

simple linear model. Although in our experiment settings, SVM with RBF kernel slightly

outperformed the other linear models we tested in precision, it should be noted that the

performance of logistic regression and linear SVM could still meet all of the requirements

from the AHA yet being more efficient computation-wise. This finding might have im-

portant implications for applications of this kind of algorithms in devices without much

computation power, such as the AEDs.

4.3 Importance of Features

We have conducted some initial analysis to evaluate the importance of each feature (data

not shown). In our experiment settings, the time domain features TCSC and Count3

seemed to be the most crucial. Removing them caused a significant drop in classifier

performance. The other time-domain features Count2 and TCI, different from the report

of previous research by Li et al. [33], did not affect our results much. The frequency-

domain feature VF leak, one of the top-ranked features in the study of Alonso-Atienza et

al. [3] actually had a low weight in our model, too. These discrepancies might come from

the use of different ECG datasets and the inconsistency in the classification schemes de-

fined in these researches. Therefore it might be inappropriate to compare the performance

numbers reported by different researchers directly without taking the differences of their

study designs into account.

In our observation, trying to remove features with lower weights in the linear models

caused a mild decrease in the performance of detecting the shockable rhythms. Hence

there might still be some room for feature selection. However, the precision for detecting

the intermediate rhythms dropped quickly once we started to eliminate some features. To

better follow the multiclass classification recommended by the AHA, we preserved these
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features, resulting in a relatively higher dimensional feature vector. No further conclusion

could not be made at the moment since we only did some preliminary work on this, but

there seemed to be some chances to reduce the feature set with some trade-off.

4.4 Limitations of the Study

The author of this thesis already tried hard to improve the correctness of the dataset, the

testing workflow, and the compliance of the AHA specifications for AED. However, due

to the lack of some rhythm types in publicly available ECG datasets, we still had an unbal-

anced dataset in which the shockable and intermediate classes only composed of a small

fraction. This, therefore, required careful class weighting or sample weighting during

training of the machine learning classifiers. Otherwise, the prediction might easily be in-

clined to the negative class. In addition, the performance metric accuracy became less

useful in this scenario. Because most of the samples belonged to the negative class, mak-

ing errors in predicting the positive class, the shockable rhythms, did not affect the overall

accuracy much. Therefore we did not report accuracy and could not use it as a measure to

select the best parameters during cross-validation.

Furthermore, the AHA guideline had minimal requirements for sample numbers of

some important rhythm types when testing the algorithms using an ECG dataset. Table

4.3 summarized the sample numbers and patient numbers of each rhythm class in our

study.
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Table 4.3: Insufficient Patient Numbers

Samples Patients AHA requirement

Shockable
Coarse VF 746 42 200
Rapid VT 75 10 50

Non-shockable 300
NSR 77950 149 100
AF, SB, SVT, heart block, idioventricular, PVCs 2612 30 30

Intermediate
Fine VF 10 4 25
Other VT 47 3 25

The sample numbers of the shockable, non-shockable, and intermediate rhythms included in our test dataset
satisfied most of the minimal requirements of the AHA. But there were not sufficient samples for fine VF.
In addition, many samples came from the same patient. If we only allowed one ECG sample per patient,
then we had insufficient patient numbers according to the AHA guideline.
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Although nearly all of the sample count of each rhythm class in our datasets satisfied

the AHA requirements, many of the samples were from the same patients. The guideline

stated that ”Algorithms may examine different rhythms recorded from the same patient.

However, there can be only one sample of each specific rhythm from each patient [28].”

From this perspective, we had insufficient patient numbers. So, overestimation of the

classification performance might be possible. Nevertheless, since VF is a disorganized

and irregular rhythm without a fixed pattern, even VF segments from the same patient

could look totally different. This might slightly ensure the diversity of the training and

testing datasets even when some of the samples were from the same patient.

The fraction of each rhythm class in our test dataset was quite different from the dis-

tribution of different arrhythmias in real-world epidemiological data. According to the

Cardiac Arrest Registry to Enhance Survival (CARES) study [37], 23.7 % of the patients

with witnessed OHCA initially presented with VF or VT, but in our dataset, only 1.05 %

of the samples contain VF or VT rhythms.

Last, we only tested the performance of the algorithms against artifact-free ECG seg-

ments as the AHA guideline only had performance goals for artifact-free samples. In real

clinical settings, however, artifacts were not unusual. Some automatic noise detection or

elimination mechanisms might be needed to improve such a system in the future.

The above problems, however, were nearly inevitable in similar academic researches

in this field because of the difficulty in collecting such large number of distinct patients

with so many different types of arrhythmia along with high-quality manual annotations

reviewed by cardiologists.
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Chapter 5

Conclusion

In this thesis, we demonstrated the building a machine-learning algorithm for detecting

life-threatening arrhythmias. The proposed algorithm has been evaluated strictly follow-

ing existing medical standards set by the AHA. This was rarely done in earlier researches

in this field. The overall performance of current machine learning-based approach in this

research exceeded all of the performance requirements specified by the AHA guideline.

Hence the adoption of machine learning algorithms for use in AED devices looks quite

promising. With the feature set we selected in this study, even a simple linear classifier

could have a decent performance. It implied that the feature set has captured most of the

main characteristics of VF and VT.

The impressive performance of the machine learning algorithms, nevertheless, still

came at a price. Compared with the computation needed for each simple VF detection

algorithm, aggregating them using a machine learning classifier requires executing all

of these algorithms together and gather their results to form a multidimensional feature

vector. This process could be computation intensive. Training such a machine learning

classifier, as in our experiments, could be handled easily by a modern personal computer.

Even if the ECG dataset becomes huge in the future, some distributed computing tech-

niques could still be leveraged. Once the training is finished, the AEDs could directly

use the trained model for prediction. However, the devices will still be responsible for

performing the feature extraction in real-time. To not delay the prediction and decision

making, these independent features might need to be calculated concurrently. In our ex-
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perience, most of the threshold-crossing-based features were easy to calculate. With fast

Fourier transform, spectral analysis was not the bottleneck, either. Some of the complexity

based algorithms, however, were computation-intensive, especially the sample entropy.

These computation requirements might increase the cost of the AED hardware. Thus in

the future, some feature selection or dimensionality reduction techniques deserve further

investigations.

Moreover, in our experiment, we took an 8-second ECG segment first, and then per-

form the processing. In real AEDs, it might not be desired to wait for eight seconds sim-

ply to gather the ECG signals and then wait for more seconds for feature extraction and

prediction. Many features relying on a one-second or three-second moving window can

be calculated along the signal recording process in parallel to decrease the waiting time.

These are potential improvements that can be done in future researches.

From the perspective of a physician, themachine learning algorithm seemed to perform

well in the tests. However, whether using these approaches in real clinical settings can

improve patient survival or safety still requires further validations. Although we have

followed the AHA medical standards as much as possible, the AHA required reporting

the performance for ”artifact-free” ECG samples only. In the real world, the ECG strips

frequently contain noise and artifacts, especially for those recorded during the cardio-

pulmonary resuscitation (CPR). To ensure the robustness of the algorithms, testing against

ECG signal with noise and artifacts is warranted. Otherwise, a noise detection algorithm

will need to be included in the system in the future.

As discussed in previous sections, the freely available ECG datasets widely used in

ECG researches were not diverse enough and contained inadequate patient numbers for

some rhythm types, had unbalanced distributions, and the quality of annotations varied.

Also, the demographic data of the patients included, such as their age, gender, underlying

diseases, …etc., were not available in these databases, but the information is important

when examining whether the testing environment is close to clinical setting or not. Amore

standard compliant ECG database recorded from actual AED devices in various clinical

settings might greatly help the advances of the researches in this field. At the time of this
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writing, however, such a database does not exist. Therefore the author of this thesis tried

to collect the best parts of existing free public ECG databases and carefully corrected

some of the errors in them. We hope that our hard work could approximate a slightly

more standard-compliant testing environment which might be used in future researches as

a benchmark for AED algorithms, helping other researchers in this field.
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