Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99424
標題: 邁向膠體熱電紀元:開發新型氧化還原性熱賈法尼凝膠
Towards Era of Gel-State Thermoelectric Devices: Exploring Novel Redox-Active Thermogalvanic Gels
作者: 許靖頡
Ching-Chieh Hsu
指導教授: 劉振良
Cheng-Liang Liu
關鍵字: 綠能,熱賈法尼,電化學,離子-溶劑作用,高分子設計,
Green energy,thermogalvanic,electrochemistry,ion solvation structure,molecular design,
出版年 : 2025
學位: 碩士
摘要: 熱賈法尼電池 (Thermogalvanic Cells, TGCs) 為一種以氧化還原反應驅動之離子型熱電裝置,具備高賽貝克係數 (Seebeck coefficient)、低熱導率、材料彈性高等特點,尤其適用於低階廢熱 (<100 °C) 之回收利用,對於實現碳中和與綠色能源發展具有高度潛力。然而,傳統 TGCs 多受限於質傳與動力學遲滯和電荷轉移效率低落等問題,導致其整體能量轉換效率與功率密度仍難以突破。本研究提出兩種創新設計策略,針對熱賈法尼凝膠材料進行熱力學與動力學性能提升:(1) 溶劑化結構工程,與 (2) 高分子結構熵調控。
第一部分針對 Fe(CN)64−/3−之熱賈法尼系統,該研究探討添加胺類分子 formamide (FA)對其氧化還原性離子之溶劑化結構、反應熵變與電荷傳輸之影響。FA為結構促進型 (Structure-making) 分子,能與水分子形成氫鍵網絡,並在電極界面降低離子反應能障,從而同時提升熱電勢與短路電流密度 (JSC)。在FA濃度為 1.12 M 時,裝置熱電性能達最大化,α 提升至 1.60 mV K⁻¹,JSC /ΔT 為 0.55 A  m−2 K−1,Pmax/ΔT² 達 0.274 mW m−2 K−2,較未添加 FA (0.165  mW m−2 K−2) 提升約 60%。此現象透過 DFT 計算進行佐證,FA–水作用能 (0.52 eV) 明顯高於水–水作用能 (0.35 eV),說明 FA 有效穩定自由水,促進反應進行。此外,透過電化學阻抗分析 (Electrochemical impedance spectroscopy, EIS) 與循環伏安法 (Cyclic voltammetry, CV) 評估其電荷轉移行為,發現 FA 在低濃度下可降低電荷轉移電阻 (Rct),提升電子轉移速率 (k0),最大值達 1.5×10−3 cm s−1。
第二部分則以分子設計角度切入,合成新型 TEMPO 基自由基側鏈取代之聚丙醯胺 (PTAm) 高分子,探討其於 TGC 系統中之應用潛力。TEMPO 為一具有高氧化還原可逆性與快速電荷轉移特性的穩定自由基官能基,鍵結至高分子主鏈上後,可藉由氧化還原過程所伴隨之構型變化產生額外構型熵變(Conformational entropy)。構型熵變可用於預測熱電勢。實驗中,PTAm 經電化學氧化後展現良好對水溶解性與可逆性,展現優異之熱電性能 (α = −0.76 mV K−1; Pmax/ΔT2 = 1.18 mW m−2 K−2)。
綜合以上,本研究從溶劑層級與分子層級提出兩種創新性設計策略,分別針對傳統無機氧化還原對 (Fe(CN)64−/3−) 與2,2,6,6-四甲基哌啶-1-氧化物自由基系統 (TEMPO) 進行性能優化,顯著提升熱電性能並同時探討其熱力學與動力學本質。研究成果不僅深化對熱賈法尼系統中熵變與溶劑化結構間相互關係的理解,也提供未來設計高效、低成本、可彎曲式熱電材料的重要參考架構,為實現低溫廢熱回收與永續能源利用開闢新方向。
Thermogalvanic cells (TGCs) represent a promising class of ionic thermoelectric systems for harvesting low-grade waste heat due to their high thermopower, low thermal conductivity, and continuous power generation capabilities. However, their performance remains limited by factors such as sluggish charge-transfer kinetics and low entropy change during redox reactions. In this work, two distinct strategies are explored to enhance the performance of gel-state TGCs through molecular and solvation engineering. First, solvation structure engineering is demonstrated using formamide (FA) as a structure-making amino-additive in Fe(CN)64−/3−-based thermogalvanic hydrogels. FA selectively interacts with water to stabilize the solvation shell, lowering desolvation barriers at the electrode interface and simultaneously increasing both the redox entropy change and charge-transfer kinetics. These effects lead to a significant enhancement in thermopower (α increases from 1.38 to 1.80 mV K−1) and a 60% improvement in normalized power output (Pmax/ΔT² = 0.274 mW m−2 K−2). Electrochemical impedance spectroscopy and DFT simulations support the dual thermodynamic and kinetic role of FA at low concentrations, while revealing performance degradation at high concentrations due to solvation shell overcrowding and viscosity increase. Second, a novel TEMPO-substituted polyacrylamide (PTAm) was synthesized and investigated as a redox-active polymer for thermogalvanic applications. The incorporation of the nitroxide radical (TEMPO) onto a flexible polymer backbone enables fast redox kinetics and a significant conformational entropy change during oxidation-reduction When deployed in aqueous media, the oxidized-PTAm polymer demonstrated excellent solubility and electrochemical reversibility, offering a robust platform for n-type thermogalvanic energy conversion.
Together, these two approaches demonstrate the importance of combining solvation tuning and molecular design to improve performance in ionic thermoelectric systems. This work not only provides a deeper understanding of the fundamental mechanisms governing entropy and kinetics in TGCs, but also introduces scalable, low-cost strategies for designing high-performance thermogalvanic gels. The findings open new avenues for efficient, soft-matter-based thermal energy harvesting devices aimed at next-generation green energy technologies.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99424
DOI: 10.6342/NTU202502535
全文授權: 未授權
電子全文公開日期: N/A
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.15 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved