Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99424
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉振良zh_TW
dc.contributor.advisorCheng-Liang Liuen
dc.contributor.author許靖頡zh_TW
dc.contributor.authorChing-Chieh Hsuen
dc.date.accessioned2025-09-10T16:14:50Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-31-
dc.identifier.citation(1) Coal 2024. https://www.iea.org/reports/coal-2024 (accessed 2025 -2-11).
(2) Rubin, E. S. Toxic Releases from Power Plants. Environ. Sci. Technol. 1999, 33 (18), 3062-3067. DOI: 10.1021/es990018d.
(3) Cormier Stephania, A.; Lomnicki, S.; Backes, W.; Dellinger, B. Origin and Health Impacts of Emissions of Toxic By-Products and Fine Particles from Combustion and Thermal Treatment of Hazardous Wastes and Materials. Environ. Health Perspect. 2006, 114 (6), 810-817. DOI: 10.1289/ehp.8629.
(4) Yolcan, O. O. World energy outlook and state of renewable energy: 10-Year evaluation. Innovation and Green Development 2023, 2 (4), 100070. DOI: 10.1016/j.igd.2023.100070.
(5) Forman, C.; Muritala, I. K.; Pardemann, R.; Meyer, B. Estimating the global waste heat potential. Renewable Sustainable Energy Rev. 2016, 57, 1568-1579. DOI: 10.1016/j.rser.2015.12.192.
(6) Velmre, E. Thomas Johann Seebeck and his contribution to the modern science and technology. In 2010 12th Biennial Baltic Electronics Conference, 4-6 Oct. 2010, 2010; pp 17-24. DOI: 10.1109/BEC.2010.5631216.
(7) Lin, M.-H.; Hong, S.-H.; Ding, J.-F.; Liu, C.-L. Organic Porous Materials and Their Nanohybrids for Next-Generation Thermoelectric Application. ACS Appl. Mater. Interfaces 2024, 16 (49), 67116-67133. DOI: 10.1021/acsami.4c12729.
(8) Shi, X.-L.; Zou, J.; Chen, Z.-G. Advanced Thermoelectric Design: From Materials and Structures to Devices. Chem. Rev. 2020, 120 (15), 7399-7515. DOI: 10.1021/acs.chemrev.0c00026.
(9) Ioffe, A. F.; Stil'bans, L. S.; Iordanishvili, E. K.; Stavitskaya, T. S.; Gelbtuch, A.; Vineyard, G. Semiconductor Thermoelements and Thermoelectric Cooling. Phys. Today 1959, 12 (5), 42-42. DOI: 10.1063/1.3060810.
(10) Gayner, C.; Kar, K. K. Recent advances in thermoelectric materials. Prog. Mater Sci. 2016, 83, 330-382. DOI: 10.1016/j.pmatsci.2016.07.002.
(11) May, A. F.; Fleurial, J.-P.; Snyder, G. J. Thermoelectric performance of lanthanum telluride produced via mechanical alloying. Physical Review B 2008, 78 (12), 125205. DOI: 10.1103/PhysRevB.78.125205.
(12) Liu, W.; Zhang, Q.; Yin, K.; Chi, H.; Zhou, X.; Tang, X.; Uher, C. High figure of merit and thermoelectric properties of Bi-doped Mg2Si0.4Sn0.6 solid solutions. J. Solid State Chem. 2013, 203, 333-339. DOI: 10.1016/j.jssc.2013.04.041.
(13) Nuñez Lobato, C.; Esposito, V.; Pryds, N.; Christensen, D. V. How efficient are thermoelectric materials? – An assessment of state-of-the-art individual and segmented thermoelectric materials. Mater. Today Energy 2024, 43, 101564. DOI: 10.1016/j.mtener.2024.101564.
(14) Shih, W.-C.; Matsuda, M.; Konno, K.; Lin, P.-S.; Higashihara, T.; Liu, C.-L. Tailored thermoelectric performance of poly(phenylene butadiynylene)s/carbon nanotubes nanocomposites towards wearable thermoelectric generator application. Composites Part B: Engineering 2024, 286, 111779. DOI: 10.1016/j.compositesb.2024.111779.
(15) Wu, W.-N.; Zheng, Q.-B.; Liu, C.-L. Recent progress in p-type doped conjugated polymer-based thermoelectric thin films. Synth. Met. 2024, 307, 117682. DOI: 10.1016/j.synthmet.2024.117682.
(16) Ma, M.; Ye, G.; Jang, S.; Kuang, Y.; Zhang, L.; Shao, S.; Koster, L. J. A.; Baran, D.; Liu, J. Realizing an N-Type Organic Thermoelectric ZT of 0.46. ACS Energy Lett. 2025, 10 (4), 1813-1820. DOI: 10.1021/acsenergylett.4c03590.
(17) Zheng, Q.-B.; Lin, Y.-C.; Lin, Y.-T.; Chang, Y.; Wu, W.-N.; Lin, J.-M.; Tung, S.-H.; Chen, W.-C.; Liu, C.-L. Investigating the stretchability of doped poly(3-hexylthiophene)-block-poly(butyl acrylate) conjugated block copolymer thermoelectric thin films. Chem. Eng. J. 2023, 472, 145121. DOI: 10.1016/j.cej.2023.145121.
(18) Ding, J.-F.; Chen, G.-L.; Liu, P.-H.; Tseng, K.-W.; Wu, W.-N.; Lin, J.-M.; Tung, S.-H.; Wang, L.; Liu, C.-L. Enhancing the thermoelectric performance of donor–acceptor conjugated polymers through dopant miscibility: a comparative study of fluorinated substituents and side-chain lengths. J. Mater. Chem. A 2024, 12 (16), 9806-9816. DOI: 10.1039/D4TA00032C.
(19) Jiang, K.; Hong, S.-H.; Tung, S.-H.; Liu, C.-L. Effects of cation size on thermoelectricity of PEDOT:PSS/ionic liquid hybrid films for wearable thermoelectric generator application. J. Mater. Chem. A 2022, 10 (36), 18792-18802. DOI: 10.1039/D2TA05134F.
(20) Ding, J.-F.; Yamanaka, K.; Hong, S.-H.; Chen, G.-L.; Wu, W.-N.; Lin, J.-M.; Tung, S.-H.; Osaka, I.; Liu, C.-L. Controlling the Thermoelectric Performance of Doped Naphthobisthiadiazole-Based Donor–Acceptor Conjugated Polymers through Backbone Engineering. Adv. Sci. 2024, 11 (48), 2410046. DOI: 10.1002/advs.202410046.
(21) Nishiyama, K.; Hsiao, Y.-T.; Wu, W.-N.; Lin, J.-M.; Tung, S.-H.; Liu, C.-L.; Higashihara, T. Controlled synthesis of alkylthio-substituted poly(thienylene vinylene) and its carbon nanotube composites for enhanced thermoelectric performance. J. Mater. Chem. A 2025, 13 (5), 3551-3561. DOI: 10.1039/D4TA07611G.
(22) Zhang, Y.; Wang, W.; Zhang, F.; Dai, K.; Li, C.; Fan, Y.; Chen, G.; Zheng, Q. Soft Organic Thermoelectric Materials: Principles, Current State of the Art and Applications. Small 2022, 18 (12), 2104922. DOI: 10.1002/smll.202104922.
(23) Zeng, Y.-J.; Wu, D.; Cao, X.-H.; Zhou, W.-X.; Tang, L.-M.; Chen, K.-Q. Nanoscale Organic Thermoelectric Materials: Measurement, Theoretical Models, and Optimization Strategies. Adv. Funct. Mater. 2020, 30 (8), 1903873. DOI: 10.1002/adfm.201903873.
(24) Wang, H.; Yu, C. Organic Thermoelectrics: Materials Preparation, Performance Optimization, and Device Integration. Joule 2019, 3 (1), 53-80. DOI: 10.1016/j.joule.2018.10.012.
(25) Massetti, M.; Jiao, F.; Ferguson, A. J.; Zhao, D.; Wijeratne, K.; Würger, A.; Blackburn, J. L.; Crispin, X.; Fabiano, S. Unconventional Thermoelectric Materials for Energy Harvesting and Sensing Applications. Chem. Rev. 2021, 121 (20), 12465-12547. DOI: 10.1021/acs.chemrev.1c00218.
(26) Liu, Y.; Cui, M.; Ling, W.; Cheng, L.; Lei, H.; Li, W.; Huang, Y. Thermo-electrochemical cells for heat to electricity conversion: from mechanisms, materials, strategies to applications. Energy Environ. Sci. 2022, 15 (9), 3670-3687. DOI: 10.1039/D2EE01457B.
(27) Cheng, H.; Ouyang, J. Soret Effect of Ionic Liquid Gels for Thermoelectric Conversion. J. Phys. Chem. Lett. 2022, 13 (46), 10830-10842. DOI: 10.1021/acs.jpclett.2c02645.
(28) Cheng, H.; Le, Q.; Liu, Z.; Qian, Q.; Zhao, Y.; Ouyang, J. Ionic thermoelectrics: principles, materials and applications. J. Mater. Chem. C 2022, 10 (2), 433-450. DOI: 10.1039/D1TC05242J.
(29) Fu, M.; Sun, Z.; Yuan, Y.; Yue, K. Ionic Thermoelectric Materials Based on the Thermodiffusion Effect: Mechanism, Advancements, and Applications. Macromol. Chem. Phys. 2025, 226 (2), 2400358. DOI: 10.1002/macp.202400358.
(30) Pai, Y.-H.; Tang, J.; Zhao, Y.; Liang, Z. Ionic Organic Thermoelectrics with Impressively High Thermopower for Sensitive Heat Harvesting Scenarios. Adv. Energy Mater. 2023, 13 (1), 2202507. DOI: 10.1002/aenm.202202507.
(31) Sun, S.; Li, M.; Shi, X.-L.; Chen, Z.-G. Advances in Ionic Thermoelectrics: From Materials to Devices. Adv. Energy Mater. 2023, 13 (9), 2203692. DOI: 10.1002/aenm.202203692.
(32) Yang, H.; Ahmed Khan, S.; Li, N.; Fang, R.; Huang, Z.; Zhang, H. Thermogalvanic gel patch for self-powered human motion recognition enabled by photo-thermal-electric conversion. Chem. Eng. J. 2023, 473, 145247. DOI: 10.1016/j.cej.2023.145247.
(33) Hsiao, Y.-C.; Lee, L.-C.; Lin, Y.-T.; Hong, S.-H.; Wang, K.-C.; Tung, S.-H.; Liu, C.-L. Stretchable polyvinyl alcohol and sodium alginate double network ionic hydrogels for low-grade heat harvesting with ultrahigh thermopower. Mater. Today Energy 2023, 37, 101383. DOI: 10.1016/j.mtener.2023.101383.
(34) Pai, Y.-H.; Xu, C.; Zhu, R.; Ding, X.; Bai, S.; Liang, Z.; Chen, L. Piezoelectric-Augmented Thermoelectric Ionogels for Self-Powered Multimodal Medical Sensors. Adv. Mater. 2025, 37 (6), 2414663. DOI: 10.1002/adma.202414663.
(35) Lee, L.-C.; Huang, K.-T.; Lin, Y.-T.; Jeng, U. S.; Wang, C.-H.; Tung, S.-H.; Huang, C.-J.; Liu, C.-L. A pH-Sensitive Stretchable Zwitterionic Hydrogel with Bipolar Thermoelectricity. Small 2024, 20 (24), 2311811. DOI: 10.1002/smll.202311811.
(36) Lee, C.-Y.; Lin, Y.-T.; Hong, S.-H.; Wang, C.-H.; Jeng, U. S.; Tung, S.-H.; Liu, C.-L. Mixed Ionic–Electronic Conducting Hydrogels with Carboxylated Carbon Nanotubes for High Performance Wearable Thermoelectric Harvesters. ACS Appl. Mater. Interfaces 2023, 15 (48), 56072-56083. DOI: 10.1021/acsami.3c09934.
(37) Cao, L.; Sun, T.; Zhao, H.; Wang, L.; Jiang, W. Approaches and methods for improving the performance of ionic thermoelectric materials. Chem. Eng. J. 2025, 506, 160206. DOI: 10.1016/j.cej.2025.160206.
(38) Kao, S.-T.; Hsu, C.-C.; Hong, S.-H.; Jeng, U. S.; Wang, C.-H.; Tung, S.-H.; Liu, C.-L. Host–Guest Complexation of α-Cyclodextrin and Triiodide Ions for Enhanced Performance of Ionic Thermoelectric Capacitors. Adv. Energy Mater. 2025, 15 (15), 2405502. DOI: 10.1002/aenm.202405502.
(39) Li, S.; Xu, Y.; Li, Z.; Zhang, S.; Dou, H.; Zhang, X. An n-type ionic thermoelectric hydrogel with confined cation diffusion for boosted low-grade heat harvesting. J. Mater. Chem. A 2025, 13 (5), 3913-3921. DOI: 10.1039/D4TA07484J.
(40) Han, C.-G.; Qian, X.; Li, Q.; Deng, B.; Zhu, Y.; Han, Z.; Zhang, W.; Wang, W.; Feng, S.-P.; Chen, G.; Liu, W. Giant thermopower of ionic gelatin near room temperature. Science 2020, 368 (6495), 1091-1098. DOI: 10.1126/science.aaz5045.
(41) Ho, D. H.; Kim, Y. M.; Kim, U. J.; Yu, K. S.; Kwon, J. H.; Moon, H. C.; Cho, J. H. Zwitterionic Polymer Gel-Based Fully Self-Healable Ionic Thermoelectric Generators with Pressure-Activated Electrodes. Adv. Energy Mater. 2023, 13 (32), 2301133. DOI: 10.1002/aenm.202301133.
(42) Tian, Y.; Yang, X.; Li, K.; Zhang, Q.; Li, Y.; Wang, H.; Hou, C. High-performance ionic thermoelectric materials and emerging applications of ionic thermoelectric devices. Mater. Today Energy 2023, 36, 101342. DOI: 10.1016/j.mtener.2023.101342.
(43) Le, Q.; Chen, Z.; Cheng, H.; Ouyang, J. Giant Thermoelectric Performance of N-Type Ionogels by Synergistic Dopings of Cations and Anions. Adv. Energy Mater. 2023, 13 (47), 2302472. DOI: 10.1002/aenm.202302472.
(44) Horike, S.; Wei, Q.; Kirihara, K.; Mukaida, M.; Sasaki, T.; Koshiba, Y.; Fukushima, T.; Ishida, K. Outstanding Electrode-Dependent Seebeck Coefficients in Ionic Hydrogels for Thermally Chargeable Supercapacitor near Room Temperature. ACS Appl. Mater. Interfaces 2020, 12 (39), 43674-43683. DOI: 10.1021/acsami.0c11752.
(45) Shen, J.; Dai, Y.; Xia, F.; Zhang, X. P-N Series Integrated Ionic Thermoelectric Generator Based on Cation/Anion-Selective Hydrogels for Body Heat Harvesting. Small 2025, 21 (24), 2502884. DOI: 10.1002/smll.202502884.
(46) Sajid, I. H.; Sabri, M. F. M.; Said, S. M.; Salleh, M. F. M.; Ghazali, N. N. N.; Saidur, R.; Subramaniam, B.; Hasan, S. W.; Jaffery, H. A. Crosslinked thermoelectric hydro-ionogels: A new class of highly conductive thermoelectric materials. Energy Convers. Manage. 2019, 198, 111813. DOI: 10.1016/j.enconman.2019.111813.
(47) Cheng, H.; He, X.; Fan, Z.; Ouyang, J. Flexible Quasi-Solid State Ionogels with Remarkable Seebeck Coefficient and High Thermoelectric Properties. Adv. Energy Mater. 2019, 9 (32), 1901085. DOI: 10.1002/aenm.201901085.
(48) Qian, X.; Ma, Z.; Huang, Q.; Jiang, H.; Yang, R. Thermodynamics of Ionic Thermoelectrics for Low-Grade Heat Harvesting. ACS Energy Lett. 2024, 9 (2), 679-706. DOI: 10.1021/acsenergylett.3c02448.
(49) He, Y.; Zhang, Q.; Cheng, H.; Liu, Y.; Shu, Y.; Geng, Y.; Zheng, Y.; Qin, B.; Zhou, Y.; Chen, S.; Li, J.; Li, M.; Odunmbaku, G. O.; Li, C.; Shumilova, T.; Ouyang, J.; Sun, K. Role of Ions in Hydrogels with an Ionic Seebeck Coefficient of 52.9 mV K–1. J. Phys. Chem. Lett. 2022, 13 (20), 4621-4627. DOI: 10.1021/acs.jpclett.2c00845.
(50) Li, Z.; Jiang, J.; He, X.; Wang, C.; Niu, Y. Recent progress on the thermoelectric effect for electrochemistry. J. Mater. Chem. A 2024, 12 (23), 13623-13646. DOI: 10.1039/D4TA00256C.
(51) Zhang, C.; Shi, X.-L.; Liu, Q.; Chen, Z.-G. Hydrogel-Based Functional Materials for Thermoelectric Applications: Progress and Perspectives. Adv. Funct. Mater. 2024, 34 (51), 2410127. DOI: 10.1002/adfm.202410127.
(52) Zhou, H.; Inoue, H.; Ujita, M.; Yamada, T. Advancement of Electrochemical Thermoelectric Conversion with Molecular Technology. Angew. Chem. Int. Ed. 2023, 62 (2), e202213449. DOI: 10.1002/anie.202213449.
(53) Lin, Y.-T.; Hsu, C.-C.; Hong, S.-H.; Lee, L.-C.; Jeng, U. S.; Chen, H.-L.; Tung, S.-H.; Liu, C.-L. Highly conductive triple network hydrogel thermoelectrochemical cells with low-grade heat harvesting. J. Power Sources 2024, 609, 234647. DOI: 10.1016/j.jpowsour.2024.234647.
(54) Hong, S.-H.; Hsu, C.-C.; Liu, T.-H.; Lee, T.-C.; Tung, S.-H.; Chen, H.-L.; Yu, J.; Liu, C.-L. Extremely large Seebeck coefficient of gelatin methacryloyl (GelMA)-based thermogalvanic cells by the dual effect of ion-induced crystallization and nanochannel control. Mater. Today Energy 2024, 42, 101546. DOI: 10.1016/j.mtener.2024.101546.
(55) Hsu, C.-C.; Lin, Y.-T.; Hong, S.-H.; Jeng, U. S.; Chen, H.-L.; Yu, J.; Liu, C.-L. 3D Printed Gelatin Methacrylate Hydrogel-Based Wearable Thermoelectric Generators. Adv. Sustain. Syst. 2024, 8 (8), 2400039. DOI: 10.1002/adsu.202400039.
(56) Zhu, Y.; Han, C.-G.; Chen, J.; Yang, L.; Ma, Y.; Guan, H.; Han, D.; Niu, L. Ultra-high performance of ionic thermoelectric-electrochemical gel cells for harvesting low grade heat. Energy Environ. Sci. 2024, 17 (12), 4104-4114. DOI: 10.1039/D4EE01150C.
(57) Fu, X.; Zhuang, Z.; Zhao, Y.; Liu, B.; Liao, Y.; Yu, Z.; Yang, P.; Liu, K. Stretchable and Self-Powered Temperature–Pressure Dual Sensing Ionic Skins Based on Thermogalvanic Hydrogels. ACS Appl. Mater. Interfaces 2022, 14 (39), 44792-44798. DOI: 10.1021/acsami.2c11124.
(58) Wang, Z.; Zhang, H.; Wang, Q. Solvent-assisted thermogalvanic cell for enhanced low-grade heat harvesting over an extended temperature range. Nano Energy 2025, 134, 110515. DOI: 10.1016/j.nanoen.2024.110515.
(59) Peng, P.; Zhou, J.; Liang, L.; Huang, X.; Lv, H.; Liu, Z.; Chen, G. Regulating Thermogalvanic Effect and Mechanical Robustness via Redox Ions for Flexible Quasi-Solid-State Thermocells. Nano-Micro Letters 2022, 14 (1), 81. DOI: 10.1007/s40820-022-00824-6.
(60) Kim, S.; Kwon, J. H.; Bae, Y.; Kim, J.; Park, T.; Moon, H. C. Realizing a high-performance n-type thermogalvanic cell by tailoring the thermodynamic equilibrium. Energy Environ. Sci. 2024, 17 (21), 8102-8110. DOI: 10.1039/D4EE00768A.
(61) Liu, Z.; Wu, D.; Wei, S.; Xing, K.; Li, M.; Jiang, Y.; Yuan, R.; Chen, G.; Hu, Z.; Huang, Y.; Liu, Z. MXene Hollow Microsphere-Boosted Nanocomposite Electrodes for Thermocells with Enhanced Thermal Energy Harvesting Capability. ACS Nano 2025, 19 (3), 3392-3402. DOI: 10.1021/acsnano.4c12294.
(62) Zhang, D.; Zhou, Y.; Mao, Y.; Li, Q.; Liu, L.; Bai, P.; Ma, R. Highly Antifreezing Thermogalvanic Hydrogels for Human Heat Harvesting in Ultralow Temperature Environments. Nano Lett. 2023, 23 (23), 11272-11279. DOI: 10.1021/acs.nanolett.3c03818.
(63) Liang, L.; Lv, H.; Shi, X.-L.; Liu, Z.; Chen, G.; Chen, Z.-G.; Sun, G. A flexible quasi-solid-state thermoelectrochemical cell with high stretchability as an energy-autonomous strain sensor. Mater. Horiz. 2021, 8 (10), 2750-2760. DOI: 10.1039/D1MH00775K.
(64) Wu, G.; Xue, Y.; Wang, L.; Wang, X.; Chen, G. Flexible gel-state thermoelectrochemical materials with excellent mechanical and thermoelectric performances based on incorporating Sn2+/Sn4+ electrolyte into polymer/carbon nanotube composites. J. Mater. Chem. A 2018, 6 (8), 3376-3380. DOI: 10.1039/C7TA11146K.
(65) Andreu, C. M.; López-Hazas, A.; Merino, S.; Vázquez, E.; Dura, O. J. Enhancing Thermogalvanic Efficiency through Electrostatic Interaction in Cationic Hydrogels. ACS Appl. Energy Mater. 2025, 8 (2), 1342-1348. DOI: 10.1021/acsaem.4c02835.
(66) Lei, Z.; Gao, W.; Wu, P. Double-network thermocells with extraordinary toughness and boosted power density for continuous heat harvesting. Joule 2021, 5 (8), 2211-2222. DOI: 10.1016/j.joule.2021.06.003.
(67) Fang, W.; Luo, H.; Mwamburi Mwakitawa, I.; Yuan, F.; Lin, X.; Wang, Y.; Yang, H.; Shumilova, T.; Hu, L.; Zheng, Y.; Li, C.; Ouyang, J.; Sun, K. Boosting Thermogalvanic Cell Performance through Synergistic Redox and Thermogalvanic Corrosion. ChemSusChem 2025, 18 (5), e202401749. DOI: 10.1002/cssc.202401749.
(68) Lei, Z.; Gao, W.; Zhu, W.; Wu, P. Anti-Fatigue and Highly Conductive Thermocells for Continuous Electricity Generation. Adv. Funct. Mater. 2022, 32 (25), 2201021. DOI: 10.1002/adfm.202201021.
(69) Ding, T.; Zhou, Y.; Wang, X.-Q.; Zhang, C.; Li, T.; Cheng, Y.; Lu, W.; He, J.; Ho, G. W. All-Soft and Stretchable Thermogalvanic Gel Fabric for Antideformity Body Heat Harvesting Wearable. Adv. Energy Mater. 2021, 11 (44), 2102219. DOI: 10.1002/aenm.202102219.
(70) Lee, C.-Y.; Hsu, C.-C.; Wang, C.-H.; Jeng, U. S.; Tung, S.-H.; Hu, C.-C.; Liu, C.-L. Exploring Pyrazine-Based Organic Redox Couples for Enhanced Thermoelectric Performance in Wearable Energy Harvesters. Small 2025, 21 (14), 2407622. DOI: 10.1002/smll.202407622.
(71) Lee, C.-Y.; Hong, S.-H.; Liu, C.-L. Recent Progress in Polymer Gel-Based Ionic Thermoelectric Devices: Materials, Methods, and Perspectives. Macromol. Rapid Commun. 2025, 46 (8), 2400837. DOI: 10.1002/marc.202400837.
(72) Chai, Y.; Li, H.; He, Y.; Tian, J.; Gu, Z.; Chi, X. Unlocking enhanced thermogalvanic cell performance via molecular chaperone-assisted non-toxic redox couple for waste heat harvesting. Chem. Eng. J. 2025, 516, 164170. DOI: 10.1016/j.cej.2025.164170.
(73) Tian, C.; Bai, C.; Wang, T.; Yan, Z.; Zhang, Z.; Zhuo, K.; Zhang, H. Thermogalvanic hydrogel electrolyte for harvesting biothermal energy enabled by a novel redox couple of SO4/32- ions. Nano Energy 2023, 106, 108077. DOI: 10.1016/j.nanoen.2022.108077.
(74) Buckingham, M. A.; Laws, K.; Li, H.; Kuang, Y.; Aldous, L. Thermogalvanic cells demonstrate inherent physiochemical limitations in redox-active electrolytes at water-in-salt concentrations. Cell Reports Physical Science 2021, 2 (8). DOI: 10.1016/j.xcrp.2021.100510.
(75) Tai, W.; Jia, J.; Zhang, W.; Dai, Y.; Wang, Q.; Zeng, W. A n-Type ionic thermoelectric generator with high thermopower and energy density enabled by modulation of thermodiffusion and thermogalvanic effect. Chem. Eng. J. 2025, 509, 161288. DOI: 10.1016/j.cej.2025.161288.
(76) Wang, Y.; Zhang, Y.; Xin, X.; Yang, J.; Wang, M.; Wang, R.; Guo, P.; Huang, W.; Sobrido, A. J.; Wei, B.; Li, X. In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Science 2023, 381 (6655), 291-296. DOI: 10.1126/science.adg0164.
(77) Zhou, H.; Matoba, F.; Matsuno, R.; Wakayama, Y.; Yamada, T. Direct Conversion of Phase-Transition Entropy into Electrochemical Thermopower and the Peltier Effect. Adv. Mater. 2023, 35 (36), 2303341. DOI: 10.1002/adma.202303341.
(78) Ujita, M.; Zhou, H.; Yamada, T. Thermoelectrochemical Method for Quantification of the Micellization Entropy of Redox-Active Polymers. ACS Macro Lett. 2025, 14 (1), 107-113. DOI: 10.1021/acsmacrolett.4c00773.
(79) Yu, B.; Duan, J.; Cong, H.; Xie, W.; Liu, R.; Zhuang, X.; Wang, H.; Qi, B.; Xu, M.; Wang, Z. L.; Zhou, J. Thermosensitive crystallization–boosted liquid thermocells for low-grade heat harvesting. Science 2020, 370 (6514), 342-346. DOI: 10.1126/science.abd6749.
(80) Wang, J.; Song, Y.; Yu, F.; Zeng, Y.; Wu, C.; Qin, X.; Peng, L.; Li, Y.; Zhou, Y.; Tao, R.; Liu, H.; Zhu, H.; Sun, M.; Xu, W.; Zhang, C.; Wang, Z. Ultrastrong, flexible thermogalvanic armor with a Carnot-relative efficiency over 8%. Nat. Commun. 2024, 15 (1), 6704. DOI: 10.1038/s41467-024-51002-8.
(81) Duan, J.; Yu, B.; Liu, K.; Li, J.; Yang, P.; Xie, W.; Xue, G.; Liu, R.; Wang, H.; Zhou, J. P-N conversion in thermogalvanic cells induced by thermo-sensitive nanogels for body heat harvesting. Nano Energy 2019, 57, 473-479. DOI: 10.1016/j.nanoen.2018.12.073.
(82) Liu, Y.; Zhang, Q.; Odunmbaku, G. O.; He, Y.; Zheng, Y.; Chen, S.; Zhou, Y.; Li, J.; Li, M.; Sun, K. Solvent effect on the Seebeck coefficient of Fe2+/Fe3+ hydrogel thermogalvanic cells. J. Mater. Chem. A 2022, 10 (37), 19690-19698. DOI: 10.1039/D1TA10508F.
(83) Duan, J.; Feng, G.; Yu, B.; Li, J.; Chen, M.; Yang, P.; Feng, J.; Liu, K.; Zhou, J. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Nat. Commun. 2018, 9 (1), 5146. DOI: 10.1038/s41467-018-07625-9.
(84) Zeng, Y.; Yu, B.; Chen, M.; Zhang, J.; Liu, P.; Guo, J.; Wang, J.; Feng, G.; Zhou, J.; Duan, J. Solvation entropy engineering of thermogalvanic electrolytes for efficient electrochemical refrigeration. Joule 2025, 9 (3). DOI: 10.1016/j.joule.2025.101822.
(85) Inoue, H.; Zhou, H.; Ando, H.; Nakagawa, S.; Yamada, T. Exploring the local solvation structure of redox molecules in a mixed solvent for increasing the Seebeck coefficient of thermocells. Chem. Sci. 2024, 15 (1), 146-153. DOI: 10.1039/D3SC04955H.
(86) He, X.; Sun, H.; Li, Z.; Chen, X.; Wang, Z.; Niu, Y.; Jiang, J.; Wang, C. Redox-induced thermocells for low-grade heat harvesting: mechanism, progress, and their applications. J. Mater. Chem. A 2022, 10 (39), 20730-20755. DOI: 10.1039/D2TA05742E.
(87) Buckingham, M. A.; Laws, K.; Cross, E.; Surman, A. J.; Aldous, L. Developing iron-based anionic redox couples for thermogalvanic cells: towards the replacement of the ferricyanide/ferrocyanide redox couple. Green Chem. 2021, 23 (22), 8901-8915. DOI: 10.1039/D1GC02989D.
(88) Wu, M.; Hao, S.; Qi, L.; Shi, Y.; Yang, W.; Bao, J.; Du, M.; Mo, Z.; Sun, L. An N-Type Thermogalvanic Cell with a High Temperature Coefficient Based on the Cu/Cu(en)22+ Redox Couple. ACS Appl. Mater. Interfaces 2025, 17 (18), 26775-26783. DOI: 10.1021/acsami.5c03375.
(89) Laws, K.; Buckingham, M. A.; Farleigh, M.; Ma, M.; Aldous, L. High Seebeck coefficient thermogalvanic cells via the solvent-sensitive charge additivity of cobalt 1,8-diaminosarcophagine. Chem. Commun. 2023, 59 (16), 2323-2326. DOI: 10.1039/D2CC05413B.
(90) Martínez, L.; Andrade, R.; Birgin, E. G.; Martínez, J. M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30 (13), 2157-2164. DOI: 10.1002/jcc.21224.
(91) Stewart, J. J. P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model. 2013, 19 (1), 1-32. DOI: 10.1007/s00894-012-1667-x.
(92) Yang, H.; Qi, Y.; Wang, Z.; Pan, Q.; Zhang, C.; Yan, J.; Cen, K.; Bo, Z.; Ostrikov, K. Sodium Nitrate/Formamide Deep Eutectic Solvent as Flame-Retardant and Anticorrosive Electrolyte Enabling 2.6 V Safe Supercapacitors with Long Cyclic Stability. Energy Environ. Mater. 2024, 7 (3), e12641. DOI: 10.1002/eem2.12641.
(93) Nicholson, R. S.; Shain, I. Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal. Chem. 1964, 36 (4), 706-723. DOI: 10.1021/ac60210a007.
(94) Nicholson, R. S. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 1965, 37 (11), 1351-1355. DOI: 10.1021/ac60230a016.
(95) Lavagnini, I.; Antiochia, R.; Magno, F. An Extended Method for the Practical Evaluation of the Standard Rate Constant from Cyclic Voltammetric Data. Electroanalysis 2004, 16 (6), 505-506. DOI: 10.1002/elan.200302851.
(96) Zeng, Y.; Yu, B.; Chen, M.; Zhang, J.; Liu, P.; Guo, J.; Wang, J.; Feng, G.; Zhou, J.; Duan, J. Solvation entropy engineering of thermogalvanic electrolytes for efficient electrochemical refrigeration. Joule 2025. DOI: 10.1016/j.joule.2025.101822.
(97) Wu, H.; Song, J.; Gao, N.; Pang, X.; Li, Y.; Xu, Z.; Yu, X. High performance eutectogel-based thermocell with a wide operating temperature range through a water-containing deep eutectic solvent strategy. Chem. Eng. J. 2025, 505, 159714. DOI: 10.1016/j.cej.2025.159714.
(98) Koshika, K.; Chikushi, N.; Sano, N.; Oyaizu, K.; Nishide, H. A TEMPO-substituted polyacrylamide as a new cathode material: an organic rechargeable device composed of polymer electrodes and aqueous electrolyte. Green Chem. 2010, 12 (9), 1573-1575. DOI: 10.1039/B926296B.
(99) Lazanas, A. C.; Prodromidis, M. I. Electrochemical Impedance Spectroscopy─A Tutorial. ACS Measurement Science Au 2023, 3 (3), 162-193. DOI: 10.1021/acsmeasuresciau.2c00070.
(100) Yang, P.; Liu, K.; Chen, Q.; Mo, X.; Zhou, Y.; Li, S.; Feng, G.; Zhou, J. Wearable Thermocells Based on Gel Electrolytes for the Utilization of Body Heat. Angew. Chem. Int. Ed. 2016, 55 (39), 12050-12053. DOI: 10.1002/anie.201606314.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99424-
dc.description.abstract熱賈法尼電池 (Thermogalvanic Cells, TGCs) 為一種以氧化還原反應驅動之離子型熱電裝置,具備高賽貝克係數 (Seebeck coefficient)、低熱導率、材料彈性高等特點,尤其適用於低階廢熱 (<100 °C) 之回收利用,對於實現碳中和與綠色能源發展具有高度潛力。然而,傳統 TGCs 多受限於質傳與動力學遲滯和電荷轉移效率低落等問題,導致其整體能量轉換效率與功率密度仍難以突破。本研究提出兩種創新設計策略,針對熱賈法尼凝膠材料進行熱力學與動力學性能提升:(1) 溶劑化結構工程,與 (2) 高分子結構熵調控。
第一部分針對 Fe(CN)64−/3−之熱賈法尼系統,該研究探討添加胺類分子 formamide (FA)對其氧化還原性離子之溶劑化結構、反應熵變與電荷傳輸之影響。FA為結構促進型 (Structure-making) 分子,能與水分子形成氫鍵網絡,並在電極界面降低離子反應能障,從而同時提升熱電勢與短路電流密度 (JSC)。在FA濃度為 1.12 M 時,裝置熱電性能達最大化,α 提升至 1.60 mV K⁻¹,JSC /ΔT 為 0.55 A  m−2 K−1,Pmax/ΔT² 達 0.274 mW m−2 K−2,較未添加 FA (0.165  mW m−2 K−2) 提升約 60%。此現象透過 DFT 計算進行佐證,FA–水作用能 (0.52 eV) 明顯高於水–水作用能 (0.35 eV),說明 FA 有效穩定自由水,促進反應進行。此外,透過電化學阻抗分析 (Electrochemical impedance spectroscopy, EIS) 與循環伏安法 (Cyclic voltammetry, CV) 評估其電荷轉移行為,發現 FA 在低濃度下可降低電荷轉移電阻 (Rct),提升電子轉移速率 (k0),最大值達 1.5×10−3 cm s−1。
第二部分則以分子設計角度切入,合成新型 TEMPO 基自由基側鏈取代之聚丙醯胺 (PTAm) 高分子,探討其於 TGC 系統中之應用潛力。TEMPO 為一具有高氧化還原可逆性與快速電荷轉移特性的穩定自由基官能基,鍵結至高分子主鏈上後,可藉由氧化還原過程所伴隨之構型變化產生額外構型熵變(Conformational entropy)。構型熵變可用於預測熱電勢。實驗中,PTAm 經電化學氧化後展現良好對水溶解性與可逆性,展現優異之熱電性能 (α = −0.76 mV K−1; Pmax/ΔT2 = 1.18 mW m−2 K−2)。
綜合以上,本研究從溶劑層級與分子層級提出兩種創新性設計策略,分別針對傳統無機氧化還原對 (Fe(CN)64−/3−) 與2,2,6,6-四甲基哌啶-1-氧化物自由基系統 (TEMPO) 進行性能優化,顯著提升熱電性能並同時探討其熱力學與動力學本質。研究成果不僅深化對熱賈法尼系統中熵變與溶劑化結構間相互關係的理解,也提供未來設計高效、低成本、可彎曲式熱電材料的重要參考架構,為實現低溫廢熱回收與永續能源利用開闢新方向。
zh_TW
dc.description.abstractThermogalvanic cells (TGCs) represent a promising class of ionic thermoelectric systems for harvesting low-grade waste heat due to their high thermopower, low thermal conductivity, and continuous power generation capabilities. However, their performance remains limited by factors such as sluggish charge-transfer kinetics and low entropy change during redox reactions. In this work, two distinct strategies are explored to enhance the performance of gel-state TGCs through molecular and solvation engineering. First, solvation structure engineering is demonstrated using formamide (FA) as a structure-making amino-additive in Fe(CN)64−/3−-based thermogalvanic hydrogels. FA selectively interacts with water to stabilize the solvation shell, lowering desolvation barriers at the electrode interface and simultaneously increasing both the redox entropy change and charge-transfer kinetics. These effects lead to a significant enhancement in thermopower (α increases from 1.38 to 1.80 mV K−1) and a 60% improvement in normalized power output (Pmax/ΔT² = 0.274 mW m−2 K−2). Electrochemical impedance spectroscopy and DFT simulations support the dual thermodynamic and kinetic role of FA at low concentrations, while revealing performance degradation at high concentrations due to solvation shell overcrowding and viscosity increase. Second, a novel TEMPO-substituted polyacrylamide (PTAm) was synthesized and investigated as a redox-active polymer for thermogalvanic applications. The incorporation of the nitroxide radical (TEMPO) onto a flexible polymer backbone enables fast redox kinetics and a significant conformational entropy change during oxidation-reduction When deployed in aqueous media, the oxidized-PTAm polymer demonstrated excellent solubility and electrochemical reversibility, offering a robust platform for n-type thermogalvanic energy conversion.
Together, these two approaches demonstrate the importance of combining solvation tuning and molecular design to improve performance in ionic thermoelectric systems. This work not only provides a deeper understanding of the fundamental mechanisms governing entropy and kinetics in TGCs, but also introduces scalable, low-cost strategies for designing high-performance thermogalvanic gels. The findings open new avenues for efficient, soft-matter-based thermal energy harvesting devices aimed at next-generation green energy technologies.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:14:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:14:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
Chapter 1 Introduction 1
1.1 Urgency of Green Energy 1
1.2 Fundamentals of Thermoelectric Materials 4
1.2.1 Introduction of Thermoelectric Materials and Devices 4
1.2.2 Gel-state Ionic Thermoelectric Materials 6
1.2.2.1 Thermally Charged Capacitors (TCCs) 8
1.2.2.2 Thermogalvanic Cells (TGCs) 9
1.3 Strategy for Enhancing TGCs Performance 13
1.3.1 Structural Entropy 13
1.3.2 Concentration difference 16
1.3.3 Solvation Structure Engineering 18
1.3.4 Complex-ligand Engineering 20
1.4 Motivation 22
Chapter 2 Experimental Section 23
2.1 Materials 23
2.1.1 Chemicals 23
2.1.2 Synthesis 23
2.1.2.1 Synthesis of N-(2,2,6,6-tetramethylpiperidin-4-yl) acrylamide (TAm) 23
2.1.2.2 TAm Polymerization 24
2.1.2.3 Oxidation of piperidine-substituted polymer 24
2.2 Fabrication of Thermogalvanic Cells 25
2.2.1 Amino-additives Thermogalvanic Hydrogels 25
2.2.1.1 Synthesis of Polyacrylamide Hydrogel 25
2.2.1.2 Fabrication of TG Hydrogel 25
2.2.2 TEMPO-substituted Polyacrylamide (PTAm) 26
2.3 Apparatus 27
2.3.1 Thermoelectric Measurement 27
2.3.2 Electrochemical Measurement 27
2.3.3 DFT Simulation 28
Chapter 3 Enhancing Thermogalvanic Hydrogel Performance via Solvation Engineering and Kinetic Optimization 30
3.1 Background 30
3.2 Results and discussion 31
3.2.1 Thermoelectric Performance 31
3.2.2 Electrochemical Property 34
3.2.2.1 Thermodynamic 34
3.2.2.2 Reaction Kinetic 36
3.2.3 Simulation on Solvation Structure 42
3.3 Summary 48
Chapter 4 Boosting Thermoelectric Performance via Synergistic Conformation Entropy Change of Polymers 50
4.1 Background 50
4.2 Results and discussion 51
4.2.1 Synthesis and characterization of PTAm polymer 51
4.2.2 Synthesis of water-soluble PTAm 52
4.2.3 Electrochemical property 53
4.2.4 Thermoelectric performance 56
4.3 Summary 57
Chapter 5 Conclusion and Future Outlook 58
REFERENCE 61
-
dc.language.isoen-
dc.subject綠能zh_TW
dc.subject熱賈法尼zh_TW
dc.subject電化學zh_TW
dc.subject離子-溶劑作用zh_TW
dc.subject高分子設計zh_TW
dc.subjection solvation structureen
dc.subjectGreen energyen
dc.subjectthermogalvanicen
dc.subjectmolecular designen
dc.subjectelectrochemistryen
dc.title邁向膠體熱電紀元:開發新型氧化還原性熱賈法尼凝膠zh_TW
dc.titleTowards Era of Gel-State Thermoelectric Devices: Exploring Novel Redox-Active Thermogalvanic Gelsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee西出 宏之;小柳津 研一;胡啟章zh_TW
dc.contributor.oralexamcommitteeHiroyuki Nishide ;Kenichi Oyaizu;Chi-Chang Huen
dc.subject.keyword綠能,熱賈法尼,電化學,離子-溶劑作用,高分子設計,zh_TW
dc.subject.keywordGreen energy,thermogalvanic,electrochemistry,ion solvation structure,molecular design,en
dc.relation.page70-
dc.identifier.doi10.6342/NTU202502535-
dc.rights.note未授權-
dc.date.accepted2025-08-02-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved