Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98936
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何傳愷zh_TW
dc.contributor.advisorChuan-Kai Hoen
dc.contributor.author吳安妮zh_TW
dc.contributor.authorAnnie Wuen
dc.date.accessioned2025-08-20T16:21:09Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-11-
dc.identifier.citationBeecher, N. A. 2006. Frog declines: Exploring connections among climate change, immunity and *disease. Ph.D. Indiana University, United States -- Indiana.
Bellard, C., C. Bertelsmeier, P. Leadley, W. Thuiller, and F. Courchamp. 2012. Impacts of climate change on the future of biodiversity. Ecology Letters 15:365-377.
Braun, J., and C. J. Lortie. 2024. Environmental filtering mediates desert ant community assembly at two spatial scales. Oecologia 205:231-244.
Camarota, F., S. Powell, A. S. Melo, G. Priest, R. J. Marquis, and H. L. Vasconcelos. 2016. Co-occurrence patterns in a diverse arboreal ant community are explained more by competition than habitat requirements. Ecology and evolution 6:8907-8918.
Chang, Y.-M., W.-H. Tseng, C.-C. Chen, C.-H. Huang, Y.-F. Chen, and K. A. Hatch. 2014. Winter breeding and high tadpole densities may benefit the growth and development of tadpoles in a subtropical lowland treefrog. Journal of Zoology 294:154-160.
Chen, I. C., J. K. Hill, R. Ohlemüller, D. B. Roy, and C. D. Thomas. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333:1024-1026.
Chen, X., Z. Li, P. Boda, I. M. Fernandes, Z. Xie, and E. Zhang. 2022. Environmental filtering in the dry season and spatial structuring in the wet: different fish community assembly rules revealed in a large subtropical floodplain lake. Environmental Science and Pollution Research 29:69875-69887.
Cody, M. L., and J. M. Diamond. 1975. Ecology and evolution of communities. Harvard University Press.
Colles, A., L. H. Liow, and A. Prinzing. 2009. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecology Letters 12:849-863.
Connor, E. F., and D. Simberloff. 1979. The Assembly of Species Communities: Chance or Competition? Ecology 60:1132-1140.
Daniel, J., J. E. Gleason, K. Cottenie, and R. C. Rooney. 2019. Stochastic and deterministic processes drive wetland community assembly across a gradient of environmental filtering. Oikos 128:1158-1169.
Das Gupta, S., and B. D. Pinno. 2018. Spatial patterns and competition in trees in early successional reclaimed and natural boreal forests. Acta Oecologica 92:138-147.
Ficetola, G. F., and L. Maiorano. 2016. Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance. Oecologia 181:683-693.
Gómez-Mestre, I., and M. Tejedo. 2002. GEOGRAPHIC VARIATION IN ASYMMETRIC COMPETITION: A CASE STUDY WITH TWO LARVAL ANURAN SPECIES. Ecology 83:2102-2111.
Griffith, D. M., J. A. Veech, and C. J. Marsh. 2016. cooccur: Probabilistic Species Co-Occurrence Analysis in R. Journal of Statistical Software, Code Snippets 69:1 - 17.
Hellmann, J. J., K. M. Prior, and S. L. Pelini. 2012. The influence of species interactions on geographic range change under climate change. Annals of the New york Academy of Sciences 1249:18-28.
IUCN. 2022. The IUCN Red List of Threatened Species.
Kam, Y.-C., C.-S. Wang, and Y.-S. Lin. 1995. Reproduction and diet of the brown frog Rana longicrus in Taiwan. Zoological Studies 34:193-201.
Keller, A., M.-O. Rödel, K. E. Linsenmair, and T. U. Grafe. 2009. The importance of environmental heterogeneity for species diversity and assemblage structure in Bornean stream frogs. Journal of Animal Ecology 78:305-314.
Kraft, N. J. B., P. B. Adler, O. Godoy, E. C. James, S. Fuller, and J. M. Levine. 2015. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology 29:592-599.
Mausberg, N., K. H. Dausmann, and J. Glos. 2023. In Search of Suitable Breeding Sites: Habitat Heterogeneity and Environmental Filters Determine Anuran Diversity of Western Madagascar. Animals.
Murray, A. H., A. J. Nowakowski, and L. O. Frishkoff. 2021. Climate and land-use change severity alter trait-based responses to habitat conversion. Global Ecology and Biogeography 30:598-610.
Navas, C. A., and L. Otani. 2007. Physiology, environmental change, and anuran conservation. Phyllomedusa: Journal of Herpetology 6:83-103.
Ospina, O., L. Villanueva-Rivera, and T. M. Aide. 2013. Variable response of anuran calling activity to daily precipitation and temperature: Implications for climate change. Ecosphere 4:art47.
Parody, J. M., F. J. Cuthbert, and E. H. Decker. 2001. The effect of 50 years of landscape change on species richness and community composition. Global Ecology and Biogeography 10:305-313.
Parris, K. M. 2004. Environmental and spatial variables influence the composition of frog assemblages in sub-tropical eastern Australia. Ecography 27:392-400.
Prado, V. H. M., and D. d. C. Rossa-Feres. 2014. The influence of niche and neutral processes on a neotropical anuran metacommunity. Austral Ecology 39:540-547.
Ramalho, W. P., V. H. M. Prado, L. Signorelli, and K. A. With. 2021. Multiple environmental filters and competition affect the spatial co-occurrence of pond-breeding anurans at both local and landscape scales in the Brazilian Cerrado. Landscape Ecology 36:1663-1683.
Ruthsatz, K., M. A. Peck, K. H. Dausmann, N. M. Sabatino, and J. Glos. 2018. Patterns of temperature induced developmental plasticity in anuran larvae. Journal of Thermal Biology 74:123-132.
Sheridan, J. A., N. M. Caruso, J. J. Apodaca, and L. J. Rissler. 2018. Shifts in frog size and phenology: Testing predictions of climate change on a widespread anuran using data from prior to rapid climate warming. Ecology and evolution 8:1316-1327.
Solomampianina, G., and N. Molnár. 2011. Occurrence of True Frogs (Ranidae L.) in the region of Szeged as related to aquatic habitat parameters. Tiscia 38:11-18.
Spasojevic, M. J., and K. N. Suding. 2012. Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. Journal of Ecology 100:652-661.
Sutton, L., F. J. Mueter, B. A. Bluhm, and K. Iken. 2021. Environmental filtering influences functional community assembly of epibenthic communities. Frontiers in Marine Science 8:736917.
Team, R. C. 2021. R: A Language and Environment for Statistical Computing}.
ter Braak, C. J. F. 1986. Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient Analysis. Ecology 67:1167-1179.
Thonis, A., and H. R. Akçakaya. 2024. Experimental evidence that competition strength scales with ecological similarity: a case study using Anolis lizards. Oecologia 204:451-465.
Thurman, L. L., and T. S. Garcia. 2019. Asymmetric competition shapes amphibian response to rapid environmental change. Ecosphere 10:e02950.
Ulrich, W., M. Piwczyński, F. T. Maestre, and N. J. Gotelli. 2012. Null model tests for niche conservatism, phylogenetic assortment and habitat filtering. Methods in Ecology and Evolution 3:930-939.
Waddell, E. H., D. S. Chapman, J. K. Hill, M. Hughes, A. Bin Sailim, J. Tangah, and L. F. Banin. 2020. Trait filtering during exotic plant invasion of tropical rainforest remnants along a disturbance gradient. Functional Ecology 34:2584-2597.
Walpole, A. A., J. Bowman, D. C. Tozer, and D. S. Badzinski. 2012. Community-level response to climate change: shifts in anuran calling phenology. Herpetological Conservation and Biology 7:249-257.
Zhang, Y., S. Dong, Q. Gao, S. Liu, H. Zhou, H. Ganjurjav, and X. Wang. 2016. Climate change and human activities altered the diversity and composition of soil microbial community in alpine grasslands of the Qinghai-Tibetan Plateau. Science of The Total Environment 562:353-363.
Zhou, J., and D. Ning. 2017. Stochastic Community Assembly: Does It Matter in Microbial Ecology? Microbiology and Molecular Biology Reviews 81:10.1128/mmbr.00002-00017.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98936-
dc.description.abstract群集組成受到決定性機制(如環境篩選與競爭)以及隨機性機制(如擴散與生態漂變)的共同影響。理解這些機制的相對貢獻,對於預測生物多樣性如何回應環境變遷至關重要。由於蛙類具有複雜的生活史,並依賴同時依賴水域與陸域環境,因此對環境變化特別敏感。儘管在熱帶與亞熱帶地區,群集組成機制受到越來越多的關注,但對於島嶼(如臺灣)中這些機制(如環境篩選及競爭)的運作方式及其在時間尺度下的變化,目前仍所知有限。本研究使用臺灣兩棲類資料庫中自2005年至2021年間,於3,534個樣區進行的標準化調查資料,探討臺灣蛙類群集組成的機制及其時空變化。我們運用典範對應分析(Canonical Correspondence Analysis, CCA)評估物種與環境因子的關係,並進行共現分析(co-occurrence analysis)以探討物種間的共域關係(如潛在的競爭)。分析分別針對整體期間(2005–2021)與兩個五年子時期(2005–2009與2017–2021)進行,以揭示時間變化趨勢。CCA結果顯示,溫度、濕度與微棲地結構是影響物種組成的主要環境因子,支持環境篩選為重要機制。然而,這些變數的解釋力隨時間而下降:2005–2009年的總解釋變異為36.93%,而2017–2021年為17.31%,整體期間僅為9.91%。這可能反映出環境擾動增加、棲地同質化,或近期資料中噪音增多等問題。部分物種在不同時期維持穩定的環境關聯,例如斯文豪氏赤蛙固定出現在溪流環境,而長腳赤蛙偏好低溫環境;另一些物種,如黑眶蟾蜍與莫氏樹蛙,則顯示其環境關聯性隨時間出現變化,可能與環境變遷有關。我們亦檢測到環境條件的時序變化:2005–2009年間樣區層級的平均溫度為24.66°C,至2017–2021年間下降了1.37°C(具統計顯著性),而相對濕度則顯著上升。儘管微棲地類別的變化主要反映分類系統的調整,這些氣候變化仍可能影響物種與環境之間的關係。共現分析結果顯示,正向物種共域關係(物種同時出現)在所有時期皆較為常見,佔整體與近期期間中物種配對的60–65%;而早期(2005–2009)則有較高比例的隨機關係(43%),顯示該時期群集結構較鬆散。拉都希氏赤蛙、腹斑蛙與布氏樹蛙等物種在各時期皆與多數其他物種呈現正向共現,而莫氏樹蛙與梭德氏赤蛙則常與其他物種呈現負向共現,可能反映出棲位差異或競爭排除。整體而言,我們的研究結果強調了:1) 環境篩選與正向的物種共域關係(而非許多先前研究所指出的競爭)所扮演的角色;2) 無尾目群集組成的時間變化; 3) 環境變化對物種與環境的關係及物種間共域關係的影響。本研究凸顯了長期生態資料對於偵測群集層級受環境改變的重要性,並透過強調保護棲地異質性與監測物種動態變化的必要性,為未來在氣候與土地利用持續變遷下的保育工作提供參考方向。zh_TW
dc.description.abstractCommunity assembly is shaped by both deterministic processes, such as environmental filtering and competition, and stochastic forces like dispersal and ecological drift. Understanding the relative contributions of these processes is essential for predicting biodiversity responses to environmental change. Anurans are particularly sensitive to such changes due to their complex life cycles and dependence on both aquatic and terrestrial habitats. However, despite increasing recognition of community assembly mechanisms in tropical and subtropical ecosystems, relatively little is known about how these processes (e.g., environmental filtering and competition) operate in island systems such as Taiwan, and how they change over time. In this study, we investigated anuran community assembly mechanisms in Taiwan and its temporal change using a standardized dataset from the Taiwan Amphibian Database, covering 3,534 survey sites between 2005 and 2021. We applied Canonical Correspondence Analysis (CCA) to evaluate species–environment relationships and co-occurrence analysis to explore species–species co-occurrence associations (e.g., potential competition). Analyses were conducted for the entire study period (2005–2021) and two five-year sub-periods (2005–2009 and 2017–2021) to examine temporal changes. The CCA results indicated that temperature, humidity, and microhabitat structure were key environmental variables shaping species composition, supporting the role of environmental filtering. However, the explanatory power of environmental variables declined over time, with the 2005–2009 period explaining 36.93% of variation in species distribution, compared to 17.31% in 2017–2021 and only 9.91% in the full dataset. This decline may reflect increasing environmental disturbance, homogenization of habitat conditions, or noise in more recent data. Some species showed consistent environmental associations across time periods, such as Odorrana swinhoana with running water and Rana longicrus with low temperatures. Others, like Duttaphrynus melanostictus and Zhangixalus moltrechti, shifted their associations over time, possibly in response to changing environmental conditions. Temporal changes in environmental conditions were also detected. Between 2005–2009 and 2017–2021, site-level mean temperature decreased significantly by 1.37°C, while relative humidity increased slightly but significantly. While the change in microhabitat composition was largely attributed to classification system updates, these environmental changes likely contributed to shifts in species–environment relationships. Co-occurrence analysis revealed that positive associations between species co-occurrence were consistently more common than negative ones, accounting for 60–65% of species pairs in the full and recent periods. In contrast, the earlier period (2005–2009) had a higher proportion of random associations (43%), suggesting a less structured community. Species like H. latouchii, N. adenopleura, and P. braueri consistently exhibited strong positive co-occurrence patterns, while species such as Z. moltrechti and R. sauteri showed high levels of negative co-occurrence, potentially reflecting niche differentiation or competitive exclusion. Overall, our findings highlight 1) the role of environmental filtering and positive species co-occurrence associations—rather than competition, as suggested by many previous studies, 2) dynamic shifts in anuran community composition over time, and 3) the effect of environmental change on species–environment associations and co-occurrence relationships. The study underscores the importance of long-term ecological data for detecting community-level responses and informs future conservation efforts by emphasizing the need to preserve habitat heterogeneity and monitor shifting species dynamics under ongoing climate and land-use change.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:21:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:21:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 ii
Abstract iv
CONTENTS vi
LIST OF FIGURES vii
LIST OF TABLES viii
Chapter 1 Introduction 1
1.1 Processes of community assembly 1
1.2 Community assembly mechanisms in anurans 2
1.3 Key environmental variables shaping community composition 3
1.4 Environmental changes and community assembly in Anuran 4
1.5 Knowledge gaps 6
1.6 Aims and objectives 6
Chapter 2 Materials and Methods 7
2.1 Data 7
2.2 Species filtering and microhabitat classification 9
2.3 Methods to examine species-environment relationships 9
2.4 Testing temporal changes in environment and microhabitat composition 10
2.5 Methods to examine species co-occurrence patterns 11
Chapter 3 Results 12
3.1 2005-2021 CCA results: species relationships with environmental variables 12
3.2 2005-2009 CCA results: species relationships with environmental variables 13
3.3 2017-2021 CCA results: species relationships with environmental variables 14
3.4 Comparison between 2005-2009 and 2017-2021 CCA results 15
3.5 Environmental change between 2005-2009 and 2017-2021 16
3.6 Results of co-occurrence analyses 17
3.7 Temporal changes in co-occurrence relationships 18
Chapter 4 Discussion 19
4.1 Overall results 19
4.2 Variability in CCA Explanatory Power 19
4.3 Temporal dynamics of species-environment relationships 20
4.4 The inconsistency of CCA results with field observation 21
4.5 Temporal shifts in species co-occurrence patterns 22
4.6 Conservation implications 23
4.7 Study limitations 24
References 26
Appendix 31
-
dc.language.isoen-
dc.subject生物與環境間的關係zh_TW
dc.subject生物間共域模式zh_TW
dc.subject環境變化zh_TW
dc.subject長期生態監測zh_TW
dc.subject典範對應分析zh_TW
dc.subjectspecies co-occurrence patternsen
dc.subjectspecies-environment relationshipsen
dc.subjectCanonical Correspondence analysisen
dc.subjectlong-term ecological monitoringen
dc.subjectenvironmental changeen
dc.title環境因子與競爭對台灣無尾目群集的影響zh_TW
dc.titleEffects of Environmental Variables and Competition on Anuran Communities in Taiwanen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee柯柏如;楊懿如;莊銘豐zh_TW
dc.contributor.oralexamcommitteePo-Ju Ke;Yi-Ju Yang;Ming-Feng Chuangen
dc.subject.keyword生物與環境間的關係,生物間共域模式,環境變化,長期生態監測,典範對應分析,zh_TW
dc.subject.keywordspecies-environment relationships,species co-occurrence patterns,environmental change,long-term ecological monitoring,Canonical Correspondence analysis,en
dc.relation.page42-
dc.identifier.doi10.6342/NTU202504042-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-14-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生態學與演化生物學研究所-
dc.date.embargo-lift2025-08-21-
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf901.59 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved