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Abstract

Community assembly is shaped by both deterministic processes, such as environmental
filtering and competition, and stochastic forces like dispersal and ecological drift. Understanding
the relative contributions of these processes is essential for predicting biodiversity responses to
environmental change. Anurans are particularly sensitive to such changes due to their complex
life cycles and dependence on both aquatic and terrestrial habitats. However, despite increasing
recognition of community assembly mechanisms in tropical and subtropical ecosystems,
relatively little is known about how these processes (e.g., environmental filtering and
competition) operate in island systems such as Taiwan, and how they change over time. In this
study, we investigated anuran community assembly mechanisms in Taiwan and its temporal
change using a standardized dataset from the Taiwan Amphibian Database, covering 3,534
survey sites between 2005 and 2021. We applied Canonical Correspondence Analysis (CCA) to
evaluate species—environment relationships and co-occurrence analysis to explore species—
species co-occurrence associations (e.g., potential competition). Analyses were conducted for the
entire study period (2005-2021) and two five-year sub-periods (2005-2009 and 2017-2021) to
examine temporal changes. The CCA results indicated that temperature, humidity, and
microhabitat structure were key environmental variables shaping species composition,
supporting the role of environmental filtering. However, the explanatory power of environmental
variables declined over time, with the 2005-2009 period explaining 36.93% of variation in
species distribution, compared to 17.31% in 2017-2021 and only 9.91% in the full dataset. This
decline may reflect increasing environmental disturbance, homogenization of habitat conditions,

or noise in more recent data. Some species showed consistent environmental associations across
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time periods, such as Odorrana swinhoana with running water and Rana longicrus with low
temperatures. Others, like Duttaphrynus melanostictus and Zhangixalus moltrechti, shifted their
associations over time, possibly in response to changing environmental conditions. Temporal
changes in environmental conditions were also detected. Between 2005-2009 and 2017-2021,
site-level mean temperature decreased significantly by 1.37°C, while relative humidity increased
slightly but significantly. While the change in microhabitat composition was largely attributed to
classification system updates, these environmental changes likely contributed to shifts in
species—environment relationships. Co-occurrence analysis revealed that positive associations
between species co-occurrence were consistently more common than negative ones, accounting
for 60-65% of species pairs in the full and recent periods. In contrast, the earlier period (2005-
2009) had a higher proportion of random associations (43%), suggesting a less structured
community. Species like H. latouchii, N. adenopleura, and P. braueri consistently exhibited
strong positive co-occurrence patterns, while species such as Z. moltrechti and R. sauteri showed
high levels of negative co-occurrence, potentially reflecting niche differentiation or competitive
exclusion. Overall, our findings highlight 1) the role of environmental filtering and positive
species co-occurrence associations—rather than competition, as suggested by many previous
studies, 2) dynamic shifts in anuran community composition over time, and 3) the effect of
environmental change on species—environment associations and co-occurrence relationships. The
study underscores the importance of long-term ecological data for detecting community-level
responses and informs future conservation efforts by emphasizing the need to preserve habitat
heterogeneity and monitor shifting species dynamics under ongoing climate and land-use change.

Keywords: Species-environment relationships, species co-occurrence patterns, environmental

change, long-term ecological monitoring, Canonical Correspondence analysis
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Chapter 1  Introduction

1.1 Processes of community assembly

The processes of community assembly have long been an interesting topic for ecologist
to discuss (Cody and Diamond 1975, Connor and Simberloff 1979). The structure of ecological
communities is influenced by a combination of non-random (deterministic) and random
(stochastic) processes (Zhou and Ning 2017). Deterministic processes—including environmental
filtering and biotic interactions like competition—act predictably by selecting species based on
their traits and interactions. In contrast, stochastic processes involve randomness, such as
dispersal events and ecological drift. For instance, wetlands with stable hydrology exhibit
community assembly patterns shaped by predictable environmental constrains, while more
dynamic sites are influenced by stochasticity (Daniel et al. 2019). Although deterministic and
stochastic are both important community assembly processes, this study will focusing on
deterministic factors because they provide mechanistic understanding necessary for predicting
community dynamics and informing conservation management (Zhou and Ning 2017). In the
process of deterministic, environmental filtering has emerged as a foundational concept: abiotic
conditions acting as a filter that allows only species with compatible traits to persist in a
particular habitat (Kraft et al. 2015). For example, fish in a subtropical lake, environmental
filtering strongly drives community assembly during dry season: species tolerant of low-water,
high-temperature, and oxygen-stress conditions dominate the niche. (Chen et al. 2022). A further
example can be found in how tropical land-use change influences community assembly based on
species traits. In logged forests, beetle and bird communities exhibit trait clustering, signaling

strong environmental filtering. Conversion to oil palm leads to random trait patterns, indicating
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loss of filtering mechanisms (Waddell et al. 2020). In Arctic epibenthic invertebrates along the
Chukchi Sea shelves showed strong functional trait alignment—body size, feeding/living habits,
movement mode, larval development—with these abiotic factors (Sutton et al. 2021). These
provides unambiguous evidence that environmental filtering is an important mechanism in

community assembly.

Besides environmental filtering, another common deterministic mechanism is
competition, which has been widely recognized as a key ecological force structuring species
composition and distribution (Das Gupta and Pinno 2018). For example, in tropical and
subtropical regions, Anolis lizard assemblages demonstrate that competition intensity increases
with ecological similarity, while intraspecific competition remains dominant, highlighting
competition’s role in niche differentiation (Thonis and Akcakaya 2024). Similarly, tropical
arboreal ant communities display spatial segregation consistent with competitive exclusion,
where dominant species create distinct territorial mosaics (Camarota et al. 2016). Collectively,
these examples underscore the pervasive influence of competition in shaping animal community

structure across diverse taxa and tropical to subtropical ecosystems.

1.2 Community assembly mechanisms in anurans

Ecological studies on anuran communities have indicated that both environmental
filtering and competition play significant roles in shaping species composition, although the
relative importance of each mechanism can vary depending on ecological contexts. Previous
studies found that in tropical and subtropical regions, environmental filtering is often identified
as a primary force structuring community. For example, research conducted in Madagascar and

2
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Borneo demonstrated that habitat characteristics like pond heterogeneity, vegetation cover, and
stream morphology significantly influence species composition (Keller et al. 2009, Mausberg et
al. 2023). Similarly, investigations in southeastern Brazil and along elevational gradients in
subtropical areas found climatic and habitat factors to be key determinants of species richness

and turnover (Prado and Rossa-Feres 2014).

Competition, however, has also been recognized as an important assembly mechanism.
Under brackish water environments, intensified interspecific competition was documented
between Bufo bufo and B. calamita (Gomez-Mestre and Tejedo 2002). Additionally, different
ecological contexts within anuran communities may invoke different assembly mechanisms; for
instance, one study reported that arboreal species exhibited patterns shaped by both
environmental filtering and competition, whereas terrestrial species were predominantly
structured by environmental filtering, with competitive interactions being prominent in smaller
pond habitats (Ramalho et al. 2021). Another study identified competition as a significant factor
influencing species' responses to habitat drying (Thurman and Garcia 2019). These findings
collectively indicate that anuran community assembly involves complex interactions among
various ecological factors, underscoring the need for continued research to better understand

these dynamics.

1.3 Key environmental variables shaping community composition

As human activities reshape the environment at an alarming rate, it is critical to identify
which key environmental variables will drive changes in community composition. Across
diverse ecosystems, clear patterns have emerged showing that shifts in microhabitats and other

3
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environmental variables are among the most potent drivers of biotic reorganization. For instance,
while regional bird species richness in northern lower Michigan remained stable over five
decades, profound turnover in species composition reflected deterministic responses to habitat
change, such as forest succession and urban expansion (Parody et al. 2001). In alpine grasslands,
experiments manipulating warming, precipitation, and grazing intensity demonstrated
pronounced shifts in soil microbial communities in response to altered moisture and nutrient
levels—conditions directly shaped by anthropogenic influence (Zhang et al. 2016). In aquatic
ecosystems, altered rainfall and temperature regimes have been tied to changes in amphibian
populations (Parris 2004). Meanwhile, in temperate wetlands, shifts in precipitation and
temperature have reorganized anuran assemblages, with breeding patterns and community
structure tightly linked to pool availability and seasonal climate variation (Ospina et al. 2013).
Collectively, these examples demonstrate that temporal changes in key environmental variables
can indeed alter species composition across different taxa, potentially shifting community
dominance, diversity, and ecosystem function. They also highlight the importance of long-term
monitoring and research, as changes in community assembly mechanisms and composition
driven by environmental shifts can only be accurately detected and predicted through extended

observation and analysis.

1.4 Environmental changes and community assembly in Anuran

It is important to study environmental change impact on anuran communities because of

the reasons:
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1) Environmental change affects species from many different aspects, for example, it
modifies temperature, precipitation patterns, hydrological cycles, and habitat structure — altering
species distribution, survival rate, behavior, phenology, and inter- and intraspecific interactions
(Chen et al. 2011, Bellard et al. 2012). For example, rising temperatures have driven poleward
and elevational range shifts in numerous taxa and advanced breeding phenology by several days
per decade, while altered rainfall regimes can shrink or fragment suitable habitats, reducing
population connectivity and resilience (Hellmann et al. 2012, Walpole et al. 2012). Ecological
specialist may face a higher risk under environmental change due to narrow niche breadth,
physiological sensitivity, and limited dispersal capacity; for instance, anurans depend on precise
hydroperiods and microhabitats for breeding and metamorphosis—altered hydrology reduces
pond permanence, disrupts larval development, and can desynchronize breeding cues (Colles et
al. 2009, Ruthsatz et al. 2018). Moreover, because anurans occupy both aquatic and terrestrial
stages, shifts in water availability or microclimate may disconnect life-history stages,

exacerbating mortality at metamorphosis.

2) Approximately 41% of amphibian species face the risk of extinction. (IUCN 2022).
Amphibians are widely regarded as one of the most vulnerable animal groups due to their
elevated risk of extinction (Navas and Otani 2007). Numerous studies have highlighted the
impacts of environmental change on the behavior, physiology, and seasonal activity of anurans.
For instance, in Canada, early spring-breeding species like the wood frog (Lithobates sylvaticus),
spring peeper (Pseudacris crucifer), and northern leopard frog (L. pipiens) have been
documented to initiate their calling activity earlier in recent years (Walpole et al. 2012); In North
America, wood frogs have shown shifts toward earlier breeding times and smaller adult body

sizes in response to warming climates (Sheridan et al. 2018). Additionally, environmental change

5
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and declining pond water levels may exacerbate disease susceptibility (Beecher 2006), leading to
population declines. Overall, these findings support the conclusion that environmental change
has significant impacts on anurans, though the magnitude and direction of these effects vary by

species (Ficetola and Maiorano 2016).

1.5 Knowledge gaps

Despite extensive research into species-environment relationships and species co-
occurrence patterns, several important gaps remain. First, the majority of research on anuran
species-environment relationships and co-occurrence patterns has been conducted in Neotropical
regions, leaving gaps in our understanding of these relationships within Asian ecosystems,
particularly in subtropical island contexts. For example, in Taiwan, there is limited
understanding of how anuran community relate to environmental variables. Second, most
existing studies do not incorporate long-term datasets or analyze data across distinct time
periods, limiting insights into potential temporal changes in species-environment associations
and co-occurrence relationships—a critical gap under rapidly shifting climate and land-use
patterns. Third, key environmental factors influencing changes in species composition remain
poorly characterized. Addressing these gaps will be essential for better predicting amphibian

responses to ongoing environmental changes.

1.6 Aims and objectives
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1) To evaluate the role of environmental filtering in annual community assembly, we
applied Canonical correspondence analysis (CCA) across three time periods (2005-2021, 2005-
2009, and 2017-2021) to identify which environmental variables associate with species
composition and whether these associations vary over time.

2) To assess the role of species co-occurrence relationships, we conducted a co-occurrence

analysis and examined potential temporal variation.

Chapter 2  Materials and Methods

2.1 Data

Species occurrence and environmental data were obtained from the Taiwan Amphibians
Database, which compiles standardized amphibian survey records collected between 2005 and
2021. This dataset includes records of all anuran species in Taiwan (Buergeria otai, B. robusta,
Bufo bankorensis, Duttaphrynus melanostictus, Fejervarya limnocharis, Hoplobatrachus
chinensis, Hyla chinensis, Hylarana latouchii, Limnonectes fujianensis, Kurixalus eiffingeri, K.
idiootocus, Microhyla heymonsi, Nidirana adenopleura, Odorrana swinhoana, Pelophylax
fukienensis, Polypedates braueri, P. megacephalus, Rana longicrus, R. sauteri, Sylvirana
guentheri, Zhangixalus moltrechti, Z. taipeianus, Z. aurantiventris, Rhinella marina, N.
shyhhuangi, A. catesbeiana, M. butleri, K. berylliniris, Kaloula pulchra, Eleutherodactylus
planirostris and F. cancrivora), as well as site-level measurements of temperature, humidity, and

microhabitats determined through visual assessment during fieldwork.

The study site, Taiwan, is a subtropical island and spanning a latitudinal range from

approximately 21.9°N to 25.3°N and exhibits high topographic complexity, with elevations

7
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ranging from sea level to nearly 4,000 meters. This geographic and elevational variation gives
rise to a wide range of climatic conditions—from tropical lowlands to temperate mountain
forests—positioning Taiwan as a biodiversity hotspot with notable levels of endemism.
Amphibian habitats in Taiwan range from lowland wetlands and agricultural landscapes to

pristine mountain streams and forests, providing a wide array of ecological niches.

A total of 3,534 survey sites were included in the analysis, the locations are showed in
Fig. 1 a). Surveys were conducted by trained volunteers following a consistent general protocol,
which involved visual and auditory detection of amphibians. Observations were made between
approximately 30 minutes after dawn and midnight. In each survey, observers documented both
the occurrence and the number of individuals for every amphibian species detected. Auditory
detection was based on species recognition by ear. However, survey effort was not standardized
across volunteer groups, and the number of visits per site varied and was not recorded in a
consistent manner. Microhabitats were visually classified in the field. Note that the classification

system for microhabitat changed in 2014, please see Table 1 for more details.

Data were cleaned prior to analysis to remove erroneous entries, including values with
0% relative humidity, temperatures exceeding 50 °C, empty microhabitat descriptions, and
records missing location or date information. For the temporal comparison, we used data from
the entire period (2005-2021), as well as two-time windows: 2005-2009 and 2017-2021. Only
sites with data available in both of these periods were included in temporal comparisons (Fig. 1
b)). Prior to the Canonical Correspondence Analysis, we excluded datapoints with microhabitat

type accounted for less than 1%.
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2.2 Species filtering and microhabitat classification

To minimize small-sample bias we discarded species represented by < 1000 individuals
in the 2005-2021 dataset (Zhangixalus aurantiventris, Rhinella marina, Nidirana shyhhuangi,
Aguarana catesbeiana, Microhyla butleri, Kurixalus berylliniris, Kaloula pulchra,
Eleutherodactylus planirostris and Fejervarya cancrivora), leaving Polypedates megacephalus
as the only exotic species retained for analysis. The microhabitats were classified into 32
different categories as showed in Table 1. All data handling and ordinations were performed in R

4.4.3 (Team 2021) using dplyr 1.1.1 for filtering and vegan 2.6-4 for CCA.

2.3 Methods to examine species-environment relationships

Understanding the species-environmental relationships remains a central goal in ecology.
We applied Canonical Correspondence Analysis (CCA) (ter Braak 1986) —a direct gradient
analysis that relates community composition to environmental variables using constrained
ordination. CCA does not rely on trait or phylogenetic data and is well suited to long-term,
observational datasets like ours. CCA was conducted separately for three time periods: 2005—
2009, 2017-2021, and 2005-2021. For data from 2005-2021, the independent variables include
temperature, humidity, year and microhabitat, and for data from 2005-2009 and 2017-2021, the

independent variables include temperature, humidity, and microhabitat.

Species abundance data were Hellinger-transformed using the ‘decostand()’ function

from the vegan package to reduce the influence of zeros and skewed distributions. Temperature
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and humidity were log-transformed and microhabitat was treated as a categorical covariate.

Ordination plots were created using ‘ordiplot()’ to visualize species—environment relationships.

2.4 Testing temporal changes in environment and microhabitat

composition

To evaluate whether temperature and humidity significantly differed between two time
periods (2005-2009 and 2017-2021), we applied generalized linear mixed-effect models
(GLMMs) to the combined dataset using the Ime4 and glmmTMB packages in R version 4.4.3.
We first imported two separate environmental datasets corresponding the two time periods. A
categorical variable ‘time_period’ was added to each dataset to indicate the sampling period, and
the two datasets were merged. Humidity was linearly rescaled to fit the (0, 1) interval using a
simple transformation, enabling modeling with a beta distribution. The variable ‘location’ (site)
was included as a random effect to account for repeated measurements within the same site
across years. For temperature analysis, the fixed effect ‘time_period’ captured the difference in
mean temperature between the two sampling periods, while the random intercept for location
controlled for site-level variation. Model summaries were obtained using ‘summary()’ and
significance of the fixed effect was assessed via ‘anova()’ using type 11 Wald qui-square tests.
Because humidity values were bounded between 0 and 1 after rescaling, we used a beta
regression mixed model with a logit link. this model was fit using the ‘glmmTMB()’ function

from the ‘glmmTMB’ package.

10
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To evaluate whether microhabitats were significantly different across two time periods,
we applied Bayesian multinomial logistic regression model using the brms package in R 4.4.3.
The model specification treated microhabitats as a categorical response variable without
assigning a reference category, allowing for symmetric treatment of all habitat types. Posterior
inference was based on Markov Chain Monte Carlo sampling, using 4 chains with 1000
iterations per chain. We inspected the posterior distributions of the category-specific regression
coefficients to assess how predictors influenced the selection of each microhabitat. A
microhabitat type was considered significantly different in its association with a covariate if the

95% credible interval (CI) of the corresponding posterior estimate did not include zero.

2.5 Methods to examine species co-occurrence patterns

To understand the co-occurrence patterns between species and the temporal changes in
co-occurrence patterns, we also applied co-occurrence analysis, which infers non-random
associations between species across sites (Ulrich et al. 2012). Co-occurrence patterns—whether
two species are found together more or less often than expected by chance—can provide indirect
evidence of biotic interactions, with aggregation suggesting shared habitat preference, and

segregation potentially indicating competitive exclusion.

To conduct pairwise co-occurrence analysis, we used the cooccur package. Species
matrices were binarized (presence—absence), transposed, and formatted as required. Species pairs
with significantly more or fewer co-occurrences than expected under random assembly (p <
0.05) were interpreted as evidence of potential biotic interactions. In the resulting co-occurrence

plots, significant positive associations (species that co-occur more often than expected, possibly
11
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due to shared environmental preferences or facilitation) were visualized in blue, while significant
negative associations (species that co-occur less often than expected, potentially due to

competitive exclusion) were shown in yellow.

Although co-occurrence analysis only reveals patterns of species co-occurrence and does
not directly infer species-species interactions, it provides an alternative approach to examining
how environmental and biotic factors may shape community structure when experimental data or
trait information is unavailable. Analyses were performed in R 4.1.2 using the cooccur package

(Griffith et al. 2016).

Chapter 3  Results

3.1 2005-2021 CCA results: species relationships with

environmental variables

We used CCA to understand the relationships between environmental variables and
species distribution. The CCA results from 2005-2021 show that the total explained variance was
9.91%, with CCA 1 accounting for 36.58% and CCA 2 for 20.01% of the variation (Fig. 2).
Species generally had diverse niches (e.g., temperature, humidity, and microhabitats). Regarding
temperature, some species fell along the temperature axis. The population density of Ho.
chinensis, S. guentheri, D. melanostictus, F. limnocharis, P. braueri and N. adenopleura
correlated with high temperature; however, the population density of Z. taipeianus, K. eiffingeri,
R. longicrus, B. bankorensis, R. sauteri, and O. swinhoana was correlated with low temperature.

Regarding humidity, the axis is shorter compare to temperature, N. adenopleura, P.
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megacephalus, P. fukienensis, K. idiootocus, and Hy. chiensis are correlated with low humidity,
the species like H. latouchii, O. swinhoana, B. bankorensis, B. otai, B. robusta, and R. sauteri
were correlated with higher humidity. Regarding microhabitats, species generally associated with
different microhabitats, although some types (e.g., short grass, artificial field, shore of still water)
showed similar effect on species density.

The CCA results showed both consistent and inconsistent results with field observations.
Consistently, arboreal species Hy. chinensis, Z. moltrechti and K. idiootocus was associated with
microhabitat of vegetation; R. sauteri was reportedly found at higher latitude, consistent with its
association with low temperature in the CCA; and O. swinhoana was reportedly correlated with
stream or creak in the field, consistent with running water in the CCA. Inconsistently, some
arboreal species (e.g., B. otai and Z. taipeianus) are not correlate with vegetation types; species
in family Ranidae reportedly correlated with aquatic habitat (Solomampianina and Molnar 2011),

but this correlation was not revealed for the species R. longicrus .

3.2 2005-2009 CCA results: species relationships with

environmental variables

The CCA results from 2005-2009 was showed in Fig. 3. The results showed that the total
explained variance was 36.93%, with CCA 1 accounting for 38.62% and CCA 2 for 21.49% of
the variation. Regarding temperature, many species were distributed along the temperature axis.
Ho. chinensis, D. melanostictus, F. limnocharis, M. heymonsi, and S. guentheri were correlated
with high temperature; while K. eiffingeri, Z. moltrechti, Z. taipeianus, L. fujianensis, O.

swinhoana, and B. bankorensis were associated with low temperature. Regarding humidity, Z.
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moltrechti, K. taipeianus, K. eiffingeri, L. fujianensis and O. swinhoana showed a correlation
with high humidity; Ho. chinensis, B. robust, and R. sauteri were correlated with low humidity.
Regarding microhabitat, S. guentheri associated with short grass; K. eiffingeri correlated with

building; B. robusta correlated with vegetation types of bush.

The CCA results showed both consistent and inconsistent patterns compared with field
observations. Consistently, species such as Z. taipeianus and R. longicrus have been reported as
winter breeders (Kam et al. 1995, Chang et al. 2014), and were associated with low temperature
in this study. However, many species like K. eiffingeri, Z. moltrechti and Z. taipeianus were

found in man-made structures like buildings and the slope of the ditch.

3.3 2017-2021 CCA results: species relationships with

environmental variables

The CCA results from 2017-2021 showed that the total explained variance was 17.31%,
with CCA 1 accounting for 34.26% and CCA 2 for 16.82% of the variation (Fig. 4).
Temperature, humidity, and microhabitats were all important factors affecting species
distribution. Regarding temperature, H. latouchiti, R. sauteri, S. guentheri, N. adenopleura were
correlated with high temperature; while F. limnocharis, B. bankorensis, D. melanostictus, Z.
moltrechti, and P. megacephalus were correlated with low temperature Regarding humidity, the
patterns were less obvious, P. braueri, Z. moltrechti, and P. megacephalus showed weak
correlation with low humidity; P. fukienensis, R. longicrus, L. fujianensis, and O. swinhoana

showed correlation with high humidity. Regarding microhabitats, majority of the microhabitats
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were clustered in the center of the plot and cannot well distinguish species from different
microhabitat, still P. fukienensis and Ho. chinensis were correlated with river wider than 5
meters; species like N. adenopleura and O. swinhoana were correlated with microhabitat around

temperate still water.

The CCA results showed both consistent and inconsistent patterns compared to field
observations. Consistently with field observation, Z. moltrechti, B. bankorensis, and R. longicrus
were correlated with lower temperature; O. swinhoana was correlated with running water;
arboreal species tend to correlated with low humidity. Inconsistent with conventional field
observations, most of the species did not show clear patterns correlated with certain microhabitat
types, for example, species in family Ranidae like R. longicrus were not correlated with water
body; species prefer lower temperature like R. sauteri did not correlated with lower temperature;
and arboreal species like Z. moltrechti, B.otai, and P. megacephalus did not correlated with the

microhabitat of vegetation types.

3.4 Comparison between 2005-2009 and 2017-2021 CCA results

Species generally showed different relationships with environmental factors between the
two time periods. For instance, H. latouchii correlated with still water and showed weak
correlation with lower temperature during 2005-2009, however, during 2017-2021, it did not
show clear correlations with microhabitats and was positively correlated with higher
temperature. During 2005-2009, L. fujianensis correlated with still water; while during 2017-
2021, it did not show clear correlation with certain microhabitat; D. melanostictus was correlated
with higher temperature during 2005-2009, but correlated with lower temperature during 2017-
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2021. During 2005-2009, Z. moltrechti was correlated with high humidity and the microhabitat
of artificial slope, while during 2017-2021, it was correlated with lower humidity and did not

show clear correlation pattern with microhabitat.

A few species showed consistency between the two time periods. For example, B.
bankorensis and R. longicrus was correlated with lower temperature; S. guentheri correlated with
higher temperature and temperate still water during 2005-2009, and during 2017-2021, it

correlated with higher temperature and both temperate and permanent still water.

3.5 Environmental change between 2005-2009 and 2017-2021

To evaluate whether shifts in community composition were associated with temporal
variations in temperature and humidity, we employed generalized linear mixed models
(GLMMs), incorporating time period (2005-2009 vs. 2017-2021) as a fixed effect and treating
sampling site as a random effect. The model estimated a mean temperature of 24.66 °C in 2005—
2009, which declined by 1.37 °C in 2017-2021 (p-value < 0.05, Table 2), indicating a
statistically significant decrease in mean temperature. Similarly, mean relative humidity
increased from 78.14% in 2005-2009 to 78.90% in 2017-2021 (p-value < 0.05, Table 3),
demonstrating a significant rise in humidity. These shifts in temperature and humidity between
the two periods suggest that altered environmental conditions may have contributed to the
observed changes in species distributions. Regarding microhabitat type, these two periods did not

differ significantly after considering the microhabitat re-classification (Table 4).
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3.6 Results of co-occurrence analyses

The co-occurrence analysis results of 2005-2021, 2005-2009, and 2017-2021 were
showed in Fig. 5, Fig. 6, and Fig. 7, respectively, and the overall percentage of each scenario is
showed in Table 5. Overall, the results from 2005-2021 showed that positive species
relationships were more common than negative ones, with 139 positive (60%), 69 negative
(30%), and 23 random (10%) relationships. Certain species exhibited clear co-occurrence
patterns. For example, although 30% of all species pairs had negative co-occurrence
relationships, R. sauteri, Z. moltrechti, and P. megacephalus showed even higher proportions of
non-co-occurrence with other species, at 62%, 52%, and 57%, respectively. In contrast, H.
latouchii, N. adenopleura, P. braueri, and K. eiffingeri tended to have more positive associations

with other species, with 90%, 86%, 81%, and 81% of their pairings being positive, respectively.

The results from 2005-2009 showed a similar pattern to those from 2005-2021. More
species pairs exhibited positive than negative co-occurrence relationships. However, the
proportion of random relationships was the highest among the three time periods, with 71
positive (37%), 38 negative (20%), and 81 random (43%) relationships. During this period, P.
megacephalus had not yet been introduced to Taiwan, and B. otai had not been distinguished
from B. choui, making direct comparisons challenging. Compared to the average proportion of
species pairs with positive co-occurrence relationships, H. latouchii, L. fujianensis, and K.
idiootocus showed higher positive co-occurrence rates, at 63%, 63%, and 68%, respectively.
Unlike the results from 2005-2021, there were fewer species with a high percentage of negative
co-occurrence relationships, with D. melanostictus, F. limnocharis, Ho. chinensis, and Z.

moltrechti each showing 37% negative associations. Some species had notably high percentages
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of random co-occurrence relationships, such as Hy. chinensis (68%), M. heymonsi (63%), and R.

longicrus (84%).

The 2017-2021 results were similar to those from 2005-2021, with 150 positive (65%),
60 negative (26%), and 21 random (9%) co-occurrence relationships. 26% of species pairs
exhibited negative associations, and P. megacephalus, R. sauteri, and Z. moltrechti had higher
percentages of non-co-occurrence with other species, at 48%, 57%, and 48%, respectively.
Meanwhile, H. latouchii, N. adenopleura, and P. braueri continued to show strong positive

associations, with 95%, 86%, and 81% positive co-occurrence rates, respectively.

3.7 Temporal changes in co-occurrence relationships

The results for 2005-2021 and 2017-2021 were similar, with positive relationships
accounting for 60% and 65%, negative relationships for 30% and 26%, and random relationships
for 10% and 9%, respectively. While the 2005-2009 period also exhibited more positive than
negative species associations, it stood out for having a significantly greater proportion of random

pairwise relationships than the other two time periods.

Some species showed consistent co-occurrence patterns over time. For instance, H.
latouchii, L. fujianensis, K. idiootocus, and N. adenopleura maintained positive relationships
with most other species across both the 2005-2009 and 2017-2021 periods. However, the
species most associated with negative co-occurrence relationships varied between time periods.

During 2005-2009, D. melanostictus, F. limnocharis, Ho. chinensis, and Z. moltrechti had the
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highest proportions of negative co-occurrences, whereas in 2017-2021, the species were P.

megacephalus, R. sauteri, and Z. moltrechti.

Chapter 4  Discussion

4.1 Overall results

To identify species-environment relationships and species-species co-occurrence
relationships, this study employed CCA to investigate species-environment relationships and
used co-occurrence analyses to explore species interactions in anuran communities in Taiwan.
The CCA results revealed clear patterns of niche differentiation among anurans; the co-
occurrence analyses showed more positive than negative associations between species pairs
during all 3 time periods, while the percentage of random relationships was higher between

2005-20009.

4.2 Variability in CCA Explanatory Power

The total explained variance of the CCA was relatively low across all periods,
particularly for the full dataset from 2005-2021, which accounted for only 9.91% of the total
variance. This suggests that species distribution patterns may be shaped by additional
unmeasured environmental or biotic factors, such as interspecific competition or historical land
use legacies, that were not captured in the analysis. Notably, the CCA conducted for the period

2005-2009 explained a much higher proportion of variance (36.93%) compared to 2017-2021
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(17.31%). Since the number of data points in 2005-2009 was smaller than in 20172021, this
could imply that the data from 2017-2021 contained more noise. The difference may also reflect
stronger environmental filtering or more stable environmental gradients in earlier years, whereas
more recent conditions may have become increasingly disturbed, homogeneous, or stochastic—
possibly due to ongoing urbanization, environmental change, or shifts in land management.
Another potential explanation for the lower explanatory power, especially in the full dataset, is
methodological: although microhabitat was included as an important variable, rare habitat types
accounting for less than 1% of observations were removed, yet more than ten microhabitat types
still remained in the analysis. This may have introduced noise or redundancy, limiting the CCA’s
ability to detect clear species—environment relationships. Together, these factors suggest that
both ecological and methodological considerations influenced the explanatory power of the CCA

over time.

4.3 Temporal dynamics of species-environment relationships

By analyzing anuran community data spanning 16 years, we identified clear temporal
changes in environmental variables and their influence on species—environment relationships.
For example, between 2005-2009 and 2017-2021, mean temperature significantly decreased,
and humidity increased. The effects of these environmental changes on species—environment
associations varied among species: some species, such as Zhangixalus moltrechti and Odorrana
swinhoana, showed consistent associations with specific environmental variables (e.g., low
temperature and running water, respectively), while others, like Nidirana adenopleura, shifted
their associations with environmental variables between the two periods. While the mechanisms
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driving these shifts remain unclear, our findings suggest that temperature, humidity, and land use
change are likely involved, echoing their reported influences on community composition over
time (Murray et al. 2021). These temporal dynamics of community assembly and associated
environmental variables highlight the value and necessity of long-term ecological studies, which

provide critical insights for biodiversity monitoring and landscape-level conservation planning.

4.4 The inconsistency of CCA results with field observation

The CCA results across different periods demonstrated both consistent and inconsistent
patterns when compared to field observations. Consistently, certain species’ associations
matched expected ecological patterns. For example, the arboreal species Hy. chinensis, Z.
moltrechti, and K. idiootocus were associated with vegetation-rich microhabitats in the 2005—
2021 dataset; R. sauteri showed a preference for low-temperature environments, consistent with
its high-altitude distribution; and O. swinhoana was associated with running water habitats.
Similarly, winter-breeding species such as Z. taipeianus and R. longicrus correlated with lower
temperatures in both the 2005-2009 and 2017-2021 datasets. In 2017-2021, consistent results
also included Z. moltrechti, B. bankorensis, and R. longicrus associating with lower

temperatures, and S. guentheri with warmer habitats and still-water environments.

However, several inconsistencies were also evident. Arboreal species such as B. otai, Z.
taipeianus, and P. megacephalus did not show expected correlations with vegetation types.
Similarly, although members of the Ranidae family are generally associated with aquatic habitats
(Solomampianina and Molnar 2011), species like R. longicrus and B. bankorensis did not exhibit
strong correlations with water bodies in some time periods. Notably, the expected association
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between O. swinhoana and running water was absent in the 2017-2021 results, and R. sauteri,
typically associated with cooler temperatures, was instead correlated with warmer habitats during

that period.

These discrepancies may stem from several factors. Methodologically, although we
excluded microhabitat types contributing less than 1% of observations, there are still many
different microhabitats, which might affect the CCA results. Additionally, by assigning a single
dominant (modal) microhabitat per site may still overlook ecologically meaningful variation—
particularly for species that rely on patchy or transitional habitats. This simplification, though
necessary to reduce noise and avoid overparameterization, may obscure fine-scale species—
habitat associations. Moreover, limitations inherent to CCA—such as its assumption of unimodal
responses and insensitivity to complex or nonlinear ecological interactions—may hinder its
ability to detect true ecological patterns. Furthermore, environmental variables beyond
temperature, humidity, and broad microhabitat categories—such as canopy cover, soil moisture,
or predator abundance—may also be important drivers of species distributions but were not
included in the analysis. To better capture species—environment relationships, future studies
could incorporate finer-scale environmental metrics and consider complementary analytical

approaches, such as generalized additive models or hierarchical modeling.

4.5 Temporal shifts in species co-occurrence patterns

The co-occurrence analyses revealed notable temporal changes in species—species
relationships across the periods 2005-2009 and 2017-2021. While positive co-occurrence
relationships dominated in all periods, their proportion increased over time—from 37% in 2005—
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2009 to 65% in 2017-2021—accompanied by a decline in random associations. This trend
suggests that species distributions might have become more spatially overlapping in recent years,
potentially due to increasing environmental changes or shared responses to changing
environmental conditions. Some species exhibited consistent co-occurrence patterns across time.
For example, H. latouchii, N. adenopleura, and P. braueri maintained strong positive
associations with most other species in both time periods. In contrast, species showing
consistently high levels of negative associations—such as R. sauteri, Z. moltrechti, and P.
megacephalus—tended to co-occur with fewer species, possibly reflecting distinct habitat

preferences or niche specialization.

Interestingly, the species associated with negative co-occurrence relationships shifted
between time periods. During 2005-2009, species like D. melanostictus, F. limnocharis, Ho.
chinensis, and Z. moltrechti exhibited the highest rates of non-co-occurrence. However, by
2017-2021, this pattern had shifted to include P. megacephalus, R. sauteri, and Z. moltrechti.
This turnover suggests that species-species interactions may be changing over time, possibly
influenced by environmental changes, species introductions, or anthropogenic disturbances.
Overall, the temporal increase in positive co-occurrence relationships may reflect greater habitat
sharing or reduced niche segregation, while the shifting identity of negatively associated species
underscores the dynamic nature of species interactions in response to changing environments.
These results highlight the importance of long-term monitoring to capture fluctuations in

community assembly and species coexistence patterns.

4.6 Conservation implications
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This study provides valuable insights for conservation planning by highlighting how
species—environment relationships and species associations have changed over time. The CCA
results revealed that temperature, humidity, and microhabitat are important factors shaping
anuran community composition, though their explanatory power has declined in recent years.
This weakening of environmental associations suggests that habitat conditions may have become
more homogeneous or disturbed, potentially due to anthropogenic pressures. Nevertheless, some
species maintained consistent preferences—such as O. swinhoana with running water or arboreal
species with low humidity—indicating the continued relevance of specific habitat features for

certain taxa.

The co-occurrence analyses from 2005-2021 showed that more species pairs exhibited
positive rather than negative associations, suggesting a tendency toward aggregation rather than
exclusion. This, together with the species-specific environmental associations observed in CCA,
highlights the importance of maintaining or restoring a diverse array of habitat types that can

support a wide range of ecological niches and promote species coexistence.

Therefore, conservation efforts should prioritize habitat heterogeneity—including the
preservation of variance microhabitats—to sustain functionally rich and resilient anuran
communities. Species with strong and consistent environmental preferences may serve as
ecological indicators, while shifts in species—environment relationships could serve as early

warning signs of community-level disturbance or environmental change.

4.7 Study limitations
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There are several limitations to this study. First, our analysis did not include functional
trait or phylogenetic information, both of which are commonly applied in past research to
enhance insights into community assembly mechanisms (Spasojevic and Suding 2012, Braun and
Lortie 2024). Integrating functional traits and phylogenetic information can let us have a better
understanding of how competition and evolutionary history participated in the formation of
species community. This omission is primarily due to the incompleteness, inaccuracy, and coarse
resolution of existing functional trait datasets for anurans in Taiwan. Many of our study species
are either missing from these datasets or have trait records — such as habitat preferences—that do

that align with field observations.

Second, we attempted to include functional traits in the JSDM. However, due to the large
size of our dataset, the computational load was too high, and the model failed to complete the
analysis within a feasible time frame. This limitation restricted our ability to assess the role of

trait-mediated processes in shaping community structure.

Third, to reduce multicollinearity and improve model stability, we simplified land-use
data and assigning a single dominant (modal) land-use type to each site. While this approach was
necessary for computational feasibility, it may have overlooked important but less dominant
habitat features, potentially leading to an incomplete representation of habitat heterogeneity and

affecting the accuracy of species—habitat associations in the CCA.

Fourth, spatial sampling was uneven across regions and time periods. Only a small
number of sites had survey data from both 2005-2009 and 2017-2021, with just one site in

southern Taiwan and three in central Taiwan. The majority of long-term survey sites were
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concentrated in northern Taiwan, which may introduce spatial bias and limit the generalizability

of our findings to other regions.
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Appendix

Table 1 Classification of microhabitats. An asterisk (*) indicates categories used only

prior to 2014 that cannot be merged into the post-2014 classification system.

Habitat types Microhabitats Abbreviation
X i short_grass
g2 B E tall_grass
A A veg_bush
et~ R veg_bottom
BA 5 F* veg_fruit
e+ w3 veg_bamboo
BA N veg_arbor
A EE - art
A EE e art_building
A EE B> art_slope
A R B ¥k art_dry_ditch
LR R # g art_trail
TR B i art_road
L T B e art_field
#Fab ok A still_shore
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#F kR KA still_ditch

#Fb kg R still_plant

ok R Ko still_water

F kR HFa* still_dry

RrpE M kB e temp_still_water
PR AT O R kwo* temp_still_paddy
TR AT O RO Aif temp_still_shore
PR O RO 4 temp_still_plant
TP AR R o 4 temp_still_plant_puddle
TP AR R - temp_still
SEWES NI & - ok per_still_water
A HE L R A per_still_shore
AAEFE RS 18 4~ per_still_plant
AAEE O R - per_still

S i @ o >5m run_w_river
S i - @ o <5m run_s_river

oK SEPI LB run_waterfall
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Table 2 GLMM results for temperature

Predictor Estimate (f) SE df t-value | p-value

Intercept (2005-2009) 24.6591 | 0.1157 | 11463.3316 | 213.05| <0.001

Time period (2017-2021 vs
-1.3754 | 0.1255 | 11464.7173 -10.96 | <0.001

2005-2009)
Table 3 GLMM results for humidity
Predictor Estimate () SE z-value p-value
Intercept (2005-2009) 1.27117 0.02013 63.14 <0.001
Time period (2017-2021
0.04462 0.02174 2.05 <0.05
vs 2005-2009)
Table 4 Bayesian multinomial logistic regression model results for humidity
Estimate 1-95% CI u-95% CI
art_building 0.99 -0.89 1.91
art_dry_ditch 0 -1.5 1.48
art_field 0.73 -0.35 1.38
art_road -0.67 -1.82 0.95
art_slope 0.48 -1.42 1.85
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art_trail -0.13 -1.41 1.57
per_still 0.16 -1.57 1.95
per_still_plant 0.35 -1.8 1.78
per_still_shore 0.51 -0.75 1.76
per_still_water -0.03 -1.93 1.7
run_s_river -0.14 -1.17 0.68
run_w_river -0.21 -1.12 1.07
run_waterfall 0.27 -1.34 1.93
short_grass -0.43 -1.36 0.83
still_ditch -1.41 -1.86 -0.79
still_dry 0.45 -0.34 1.51
still_plant 0.03 -1.97 1.9
still_shore -0.45 -1.02 0.47
still_water 0.1 -1.35 1.94
tall_grass 0.08 -0.68 1.77
temp_still 0.57 -0.53 2.02
temp_still_paddy 0.79 -1.96 1.93
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temp_still_plant -1.09 -1.98 0.07
temp_still_plant_puddle 0.87 0.38 1.8
tempstillshore 0.03 -1.3 1.6
temp_still_water 1.17 0.47 1.92
veg_arbor 0.4 -0.72 1.67
veg_bamboo -0.01 -1.54 1.7
veg_bottom -0.32 -0.93 0.96
veg_bush -0.48 -1.96 1.53
veg_fruit 0.21 -0.72 1.96
Table 5 Overall results of co-occurrence analyses
Positive relationships Random relationships Negative relationships
2005-2021 139 (60%) 23 (10%) 69 (30%)
2005-2009 71 (37%) 81 (43%) 38 (20%)
2017-2021 150 (65%) 21 (9%) 60 (26%)
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Fig. 1 a) Study sites from 2005-2021. b) Study sites from 2005-2009 and 2017-2021
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Fig. 2 CCA results biplot during 2005-2021.

37

doi:10.6342/NTU202504042



10

0.5

0.0

CCA2 (21.48%)
05

-15 -1.0

-2.0

Fig.

2005-2009 Type 1 CCA (36.93%)

Polypedategfiadifiensis
still_plant gy g o

Pelophylanfikian Dl
Sylvirana.guentheri veq_arbor M

year 2008 il plsmt

Microhyla heymonsi

Kurixalus eiffiiggpuiiding

midity

Zh@ngrgiksumatieeninus
art_slope

{l f
ﬁ&;ﬂ?ﬁﬁ%manms

_vcﬁ?aréﬂ!}éjnfan

Shairt grass
DutthSHFHRY e

Brto-bankorenst

Rana.longicrus

art  run_s_river

art_road
Hoplobatrachus.chinensis
veg_bush Biergeria robusta
run_w_river
temperature

Rana sauteri
T T T T T
3 2 1 0 1 2

CCAT1 (38.62%)

CCA results biplot during 2005-2009.

38

doi:10.6342/NTU202504042



0.0 05 1.0

CCA2 (17.54%)
05

-1.0

-15

-2.0

Fig.

2017-2021 Type 1 CCA (16.84%)

run_w_river

Pemp'ﬂ@m%ﬁ%’ﬁﬁ@.chmen%sl b shore

Limnonectes fujianensis

h%gg@wuh_mlmc

Rana longicrus

DR ERgaRAdch

Fejervarya imnocharis

lus.eiffinger]
run
tall grassv 7

|
per &i0g

Hylarana.latouchii

Bavieasautrrntheri

=

temperature

ter Polypedates braueri

veg_bottom

Zhafiyieahesimolaéchti

P

olypedates.megacephalus

-3 -2 -1 0

CCA1 (35.66%)

CCA results biplot during 2017-2021.

39

doi:10.6342/NTU202504042
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Fig. 5 Co-occurrence analysis results of 2005-2021.
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Species Co-occurrence Matrix
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Fig. 6 Co-occurrence analysis results of 2005-2009.
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Fig. 7 Co-occurrence analysis results of 2017-2021.
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