Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97204
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂廷璋zh_TW
dc.contributor.advisorTing-Jang Luen
dc.contributor.author劉昀諠zh_TW
dc.contributor.authorYun-Hsuan Liuen
dc.date.accessioned2025-02-27T16:39:55Z-
dc.date.available2025-02-28-
dc.date.copyright2025-02-27-
dc.date.issued2024-
dc.date.submitted2024-08-14-
dc.identifier.citation呂雅珍,以液相層析串聯質譜法分析臺灣婦女泌乳期間母乳寡醣與三酸甘油酯之變化。國立臺灣大學。臺北市,2022。
柯鈞銓,以超高效液相層析串聯質譜法分析油脂中三酸甘油酯及固醇化合物特徵。國立臺灣大學。臺北市,2016。
Al-Tamer, Y. Y.; Mahmood, A. A., The influence of Iraqi mothers' socioeconomic status on their milk-lipid content. Eur. J. Clin. Nutr. 2006, 60, 1400-1405.
Aly, M. R. E.; Ibrahim, E. S. I.; El Ashry, E. S. H.; Schmidt, R. R., Synthesis of lacto-N-neotetraose and lacto-N-tetraose using the dimethylmaleoyl group as amino protective group. Carbohydr. Res. 1999, 316, 121-132.
Andreas, N. J.; Kampmann, B.; Mehring Le-Doare, K., Human breast milk: A review on its composition and bioactivity. Early Hum. Dev. 2015, 91, 629-635.
Arab-Tehrany, E.; Jacquot, M.; Gaiani, C.; Imran, M.; Desobry, S.; Linder, M., Beneficial effects and oxidative stability of omega-3 long-chain polyunsaturated fatty acids. Trends Food Sci. 2012, 25, 24-33.
Asakuma, S.; Hatakeyama, E.; Urashima, T.; Yoshida, E.; Katayama, T.; Yamamoto, K.; Kumagai, H.; Ashida, H.; Hirose, J.; Kitaoka, M., Physiology of Consumption of Human Milk Oligosaccharides by Infant Gut-associated Bifidobacteria. J. Biol. Chem. 2011, 286, 34583-34592.
Atochina, O.; Harn, D., LNFPIII/LeX-stimulated macrophages activate natural killer cells via CD40-CD40L interaction. Clin. Diagn. Lab. Immunol. 2005, 12, 1041-1049.
Atwood, C. S.; Hartmann, P. E., Collection of fore and hind milk from the sow and the changes in milk composition during suckling. J. Dairy Res. 1992, 59, 287-298.
Auer, F.; Jarvas, G.; Guttman, A., Recent advances in the analysis of human milk oligosaccharides by liquid phase separation methods. Journal of Chromatography B 2021, 1162, 122497.
Auestad, N.; Scott, D. T.; Janowsky, J. S.; Jacobsen, C.; Carroll, R. E.; Montalto, M. B.; Halter, R.; Qiu, W.; Jacobs, J. R.; Connor, W. E.; Connor, S. L.; Taylor, J. A.; Neuringer, M.; Fitzgerald, K. M.; Hall, R. T., Visual, Cognitive, and Language Assessments at 39 Months: A Follow-up Study of Children Fed Formulas Containing Long-Chain Polyunsaturated Fatty Acids to 1 Year of Age. Pediatrics 2003, 112, e177-e183.
Austin, S.; De Castro, C.; Bénet, T.; Hou, Y.; Sun, H.; Thakkar, S.; Vinyes-Pares, G.; Zhang, Y.; Wang, P., Temporal Change of the Content of 10 Oligosaccharides in the Milk of Chinese Urban Mothers. Nutrients 2016, 8, 346.
Austin, S.; De Castro, C. A.; Sprenger, N.; Binia, A.; Affolter, M.; Garcia-Rodenas, C. L.; Beauport, L.; Tolsa, J. F.; Fumeaux, C. J. F., Human Milk Oligosaccharides in the Milk of Mothers Delivering Term versus Preterm Infants. Nutrients 2019, 11, 16.
Azad, M. B.; Robertson, B.; Atakora, F.; Becker, A. B.; Subbarao, P.; Moraes, T. J.; Mandhane, P. J.; Turvey, S. E.; Lefebvre, D. L.; Sears, M. R.; Bode, L., Human Milk Oligosaccharide Concentrations Are Associated with Multiple Fixed and Modifiable Maternal Characteristics, Environmental Factors, and Feeding Practices. J. Nutr. 2018, 148, 1733-1742.
Béghin, L.; Marchandise, X.; Lien, E.; Bricout, M.; Bernet, J.-P.; Lienhardt, J.-F.; Jeannerot, F.; Menet, V.; Requillart, J.-C.; Marx, J.; De Groot, N.; Jaeger, J.; Steenhout, P.; Turck, D., Growth, stool consistency and bone mineral content in healthy term infants fed sn-2-palmitate-enriched starter infant formula: A randomized, double-blind, multicentre clinical trial. Clinical Nutrition 2019, 38, 1023-1030.
Bach, A. C.; Babayan, V. K., Medium-chain triglycerides: an update. Am. J. Clin. Nutr. 1982, 36, 950-962.
Balogh, R.; Szarka, S.; Beni, S., Determination and quantification of 2 '-O-fucosyllactose and 3-O-fucosyllactose in human milk by GC-MS as O-trimethylsilyl-oxime derivatives. J. Pharm. Biomed. Anal. 2015, 115, 450-456.
Bao, Y.; Chen, C.; Newburg, D. S., Quantification of neutral human milk oligosaccharides by graphitic carbon high-performance liquid chromatography with tandem mass spectrometry. Anal. Biochem. 2013, 433, 28-35.
Bar-Yoseph, F.; Lifshitz, Y.; Cohen, T., Review of sn-2 palmitate oil implications for infant health. Prostaglandins Leukot Essent Fatty Acids 2013, 89, 139-143.
Barbosa-Cesnik, C.; Schwartz, K.; Foxman, B., Lactation Mastitis. JAMA 2003, 289, 1609.
Barreiro, R.; Díaz-Bao, M.; Cepeda, A.; Regal, P.; Fente, C. A., Fatty acid composition of breast milk in Galicia (NW Spain): A cross-country comparison. Prostaglandins Leukot. Essent. Fatty Acids 2018, 135, 102-114.
Berger, A.; Fleith, M.; Crozier, G., Nutritional implications of replacing bovine milk fat with vegetable oil in infant formulas. J. Pediatr. Gastroenterol. Nutr. 2000, 30, 115-130.
Bienenstock, J.; Buck, R. H.; Linke, H.; Forsythe, P.; Stanisz, A. M.; Kunze, W. A., Fucosylated but Not Sialylated Milk Oligosaccharides Diminish Colon Motor Contractions. PLOS ONE 2013, 8, e76236.
Blakely, M. L.; Lally, K. P.; McDonald, S.; Brown, R. L.; Barnhart, D. C.; Ricketts, R. R.; Thompson, W. R.; Scherer, L. R.; Klein, M. D.; Letton, R. W.; Chwals, W. J.; Touloukian, R. J.; Kurkchubasche, A. G.; Skinner, M. A.; Moss, R. L.; Hilfiker, M. L.; Net, N. E. C. S. N. N. R., Postoperative outcomes of extremely low birth-weight infants with necrotizing enterocolitis or isolated intestinal perforation - A prospective cohort study by the NICHD neonatal research network. Ann. Surg. 2005, 241, 984-989.
Bobinski, R.; Mikulska, M., The ins and outs of maternal-fetal fatty acid metabolism. Acta Biochim. Pol. 2015, 62, 499-507.
Bobiński, R.; Mikulska, M.; Mojska, H.; Simon, M., Comparison of the fatty acid composition of transitional and mature milk of mothers who delivered healthy full-term babies, preterm babies and full-term small for gestational age infants. Eur. J. Clin. Nutr. 2013, 67, 966-971.
Bobiński, R.; Bobińska, J., Fatty acids of human milk – a review. Int. J. Vitam. Nutr. Res. 2022, 92, 280-291.
Bode, L.; Kunz, C.; Muhly-Reinholz, M.; Mayer, K.; Seeger, W.; Rudloff, S., Inhibition of monocyte, lymphocyte, and neutrophil adhesion to endothelial cells by human milk oligosaccharides. Thromb. Haemost. 2004a, 92, 1402-1410.
Bode, L.; Rudloff, S.; Kunz, C.; Strobel, S.; Klein, N., Human milk oligosaccharides reduce platelet-neutrophil complex formation leading to a decrease in neutrophil β2 integrin expression. J. Leukoc. Biol. 2004b, 76, 820-826.
Bode, L., Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 2012, 22, 1147-1162.
Bode, L.; Jantscher-Krenn, E., Structure-Function Relationships of Human Milk Oligosaccharides. Adv. Nutr. 2012, 3, 383S-391S.
Bode, L.; Kuhn, L.; Kim, H. Y.; Hsiao, L.; Nissan, C.; Sinkala, M.; Kankasa, C.; Mwiya, M.; Thea, D. M.; Aldrovandi, G. M., Human milk oligosaccharide concentration and risk of postnatal transmission of HIV through breastfeeding. Am. J. Clin. Nutr. 2012, 96, 831-839.
Bokor, S.; Koletzko, B.; Decsi, T., Systematic Review of Fatty Acid Composition of Human Milk from Mothers of Preterm Compared to Full-Term Infants. Ann. Nutr. Metab. 2007, 51, 550-556.
Bouchara, J. P.; Sanchez, M.; Chevailler, A.; Marot-Leblond, A.; Lissitzky, J. C.; Tronchin, G.; Chabasse, D., Sialic acid-dependent recognition of laminin and fibrinogen by Aspergillus fumigatus conidia. Infect. Immun. 1997, 65, 2717-2724.
Brassart, D.; Woltz, A.; Golliard, M.; Neeser, J. R., In vitro inhibition of adhesion of Candida albicans clinical isolates to human buccal epithelial cells by Fuc alpha 1→2Gal beta-bearing complex carbohydrates. Infect. Immun. 1991, 59, 1605-1613.
Bravi, F.; Wiens, F.; Decarli, A.; Dal Pont, A.; Agostoni, C.; Ferraroni, M., Impact of maternal nutrition on breast-milk composition: a systematic review. Am. J. Clin. 2016, 104, 646-662.
Broadberry, R. E.; Linchu, M., The Lewis blood group system among Chinese in Taiwan. Hum. Hered. 1991, 41, 290-294.
Brown, K. H.; Akhtar, N. A.; Robertson, A. D.; Ahmed, M. G., Lactational capacity of marginally nourished mothers: relationships between maternal nutritional status and quantity and proximate composition of milk. Pediatrics 1986, 78, 909-919.
Bych, K.; Miks, M. H.; Johanson, T.; Hederos, M. J.; Vigsnæs, L. K.; Becker, P., Production of HMOs using microbial hosts - from cell engineering to large scale production. Curr. Opin. Biotechnol. 2019, 56, 130-137.
Bzikowska-Jura, A.; Czerwonogrodzka-Senczyna, A.; Oledzka, G.; Szostak-Wegierek, D.; Weker, H.; Wesolowska, A., Maternal Nutrition and Body Composition During Breastfeeding: Association with Human Milk Composition. Nutrients 2018, 10, 15.
Caughey, G. E.; Mantzioris, E.; Gibson, R. A.; Cleland, L. G.; James, M. J., The effect on human tumor necrosis factor alpha and interleukin 1 beta production of diets enriched in n-3 fatty acids from vegetable oil or fish oil. Am. J. Clin. Nutr. 1996, 63, 116-122.
Chai, W.; Lawson, A. M.; Piskarev, V., Branching pattern and sequence analysis of underivatized oligosaccharides by combined MS/MS of singly and doubly charged molecular ions in negative-ion electrospray mass spectrometry. J. Am. Soc. Mass. Spectrom. 2002, 13, 670-679.
Chai, W.; Piskarev, V. E.; Mulloy, B.; Liu, Y.; Evans, P. G.; Osborn, H. M. I.; Lawson, A. M., Analysis of Chain and Blood Group Type and Branching Pattern of Sialylated Oligosaccharides by Negative Ion Electrospray Tandem Mass Spectrometry. Anal. Chem. 2006, 78, 1581-1592.
Chai, W.; Zhang, Y.; Mauri, L.; Ciampa, M. G.; Mulloy, B.; Sonnino, S.; Feizi, T., Assignment by Negative-Ion Electrospray Tandem Mass Spectrometry of the Tetrasaccharide Backbones of Monosialylated Glycans Released from Bovine Brain Gangliosides. J. Am. Soc. Mass. Spectrom. 2018, 29, 1308-1318.
Chai, W. G.; Piskarev, V.; Lawson, A. M., Negative ion electrospray mass spectrometry of neutral underivatized oligosaccharides. Anal. Chem. 2001, 73, 651-657.
Chen, X., Human Milk Oligosaccharides (HMOS): Structure, Function, and Enzyme-Catalyzed Synthesis. In Adv. Carbohydr. Chem. Biochem., Baker, D. C.; Horton, D., Eds. Elsevier Academic Press Inc: San Diego, 2015; Vol. 72, pp 113-190.
Chessa, D.; Winter, M. G.; Jakomin, M.; Bäumler, A. J., Salmonella enterica serotype Typhimurium Std fimbriae bind terminal α(1,2)fucose residues in the cecal mucosa. Mol. Microbiol. 2009, 71, 864-875.
Chuang, C. K.; Yeung, C. Y.; Jim, W. T.; Lin, S. P.; Wang, T. J.; Huang, S. F.; Liu, H. L., Comparison of free fatty acid content of human milk from Taiwanese mothers and infant formula. Taiwan. J. Obstet. Gynecol. 2013, 52, 527-533.
Cilla, A.; Diego Quintaes, K.; Barberá, R.; Alegría, A., Phospholipids in Human Milk and Infant Formulas: Benefits and Needs for Correct Infant Nutrition. Crit. Rev. Food Sci. Nutr. 2016, 56, 1880-1892.
Clark, R. H.; Gordon, P.; Walker, W. M.; Laughon, M.; Smith, P. B.; Spitzer, A. R., Characteristics of patients who die of necrotizing enterocolitis. J. Perinatol. 2012, 32, 199-204.
Claumarchirant, L.; Cilla, A.; Matencio, E.; Sanchez-Siles, L. M.; Castro-Gomez, P.; Fontecha, J.; Alegría, A.; Lagarda, M. J., Addition of milk fat globule membrane as an ingredient of infant formulas for resembling the polar lipids of human milk. Int. Dairy J. 2016, 61, 228-238.
Coppa, G.; Pierani, P.; Zampini, L.; Carloni, I.; Carlucci, A.; Gabrielli, O., Oligosaccharides in human milk during different phases of lactation. Acta Paediatrica 1999, 88, 89-94.
Coppa, G. V.; Zampini, L.; Galeazzi, T.; Facinelli, B.; Ferrante, L.; Capretti, R.; Orazio, G., Human Milk Oligosaccharides Inhibit the Adhesion to Caco-2 Cells of Diarrheal Pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatr. Res. 2006, 59, 377-382.
Coppa, G. V.; Gabrielli, O.; Zampini, L.; Galeazzi, T.; Ficcadenti, A.; Padella, L.; Santoro, L.; Soldi, S.; Carlucci, A.; Bertino, E.; Morelli, L., Oligosaccharides in 4 Different Milk Groups, Bifidobacteria, and Ruminococcus obeum. J. Pediatr. Gastroenterol. Nutr. 2011, 53, 80-87.
Damsgaard, C. T.; Lauritzen, L.; Kjær, T. M. R.; Holm, P. M. I.; Fruekilde, M. B.; Michaelsen, K. F.; Frokiær, H., Fish oil supplementation modulates immune function in healthy infants. J. Nutr. 2007, 137, 1031-1036.
Delgado, S.; Arroyo, R.; Jiménez, E.; Marín, M. L.; Del Campo, R.; Fernández, L.; Rodríguez, J. M., Staphylococcus epidermidis strains isolated from breast milk of women suffering infectious mastitis: potential virulence traits and resistance to antibiotics. BMC Microbiol. 2009, 9, 82.
Demmelmair, H.; Koletzko, B., Lipids in human milk. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 57-68.
Devaraj, N.; Sheykhnazari, M.; Warren, W. S.; Bhavanandan, V. P., Differential binding of Pseudomonas aeruginosa to normal and cystic fibrosis tracheobronchial mucins. Glycobiology 1994, 4, 307-316.
Dicken, B. J.; Sergi, C.; Rescorla, F. J.; Breckler, F.; Sigalet, D., Medical management of motility disorders in patients with intestinal failure: a focus on necrotizing enterocolitis, gastroschisis, and intestinal atresia. J. Pediatr. Surg. 2011, 46, 1618-1630.
Domenichiello, A. F.; Kitson, A. P.; Bazinet, R. P., Is docosahexaenoic acid synthesis from a-linolenic acid sufficient to supply the adult brain? Prog. Lipid Res. 2015, 59, 54-66.
Eidelman, A. I.; Schanler, R. J.; Johnston, M.; Landers, S.; Noble, L.; Szucs, K.; Viehmann, L., Breastfeeding and the Use of Human Milk. Pediatrics 2012, 129, e827-e841.
Eiwegger, T.; Stahl, B.; Schmitt, J.; Boehm, G.; Gerstmayr, M.; Pichler, J.; Dehlink, E.; Loibichler, C.; Urbanek, R.; Szépfalusi, Z., Human Milk–Derived Oligosaccharides and Plant-Derived Oligosaccharides Stimulate Cytokine Production of Cord Blood T-Cells In Vitro. Pediatr. Res. 2004, 56, 536-540.
Elwakiel, M.; Hageman, J. A.; Wang, W.; Szeto, I. M.; Van Goudoever, J. B.; Hettinga, K. A.; Schols, H. A., Human Milk Oligosaccharides in Colostrum and Mature Milk of Chinese Mothers: Lewis Positive Secretor Subgroups. J. Agric. Food Chem. 2018, 66, 7036-7043.
Endres, S.; Ghorbani, R.; Kelley, V. E.; Georgilis, K.; Lonnemann, G.; Van Der Meer, J. W. M.; Cannon, J. G.; Rogers, T. S.; Klempner, M. S.; Weber, P. C.; Schaefer, E. J.; Wolff, S. M.; Dinarello, C. A., The Effect of Dietary Supplementation with n—3 Polyunsaturated Fatty Acids on the Synthesis of Interleukin-1 and Tumor Necrosis Factor by Mononuclear Cells. N. Engl. J. Med. 1989, 320, 265-271.
Engfer, M. B.; Stahl, B.; Finke, B.; Sawatzki, G.; Daniel, H., Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am. J. Clin. Nutr. 2000, 71, 1589-1596.
Ettyang, G. A.; Van Marken Lichtenbelt, W. D.; Esamai, F.; Saris, W. H. M.; Westerterp, K. R., Assessment of Body Composition and Breast Milk Volume in Lactating Mothers in Pastoral Communities in Pokot, Kenya, Using Deuterium Oxide. Ann. Nutr. Metab. 2005, 49, 110-117.
Etzold, S.; Bode, L., Glycan-dependent viral infection in infants and the role of human milk oligosaccharides. Curr. Opin. Virol. 2014, 7, 101-107.
Fernandezmayoralas, A.; Martinlomas, M., Synthesis of 3- and 2′-fucosyl-lactose and 3,2′-difucosyl-lactose from partially benzylated lactose derivatives. Carbohydr. Res. 1986, 154, 93-101.
Floris, L. M.; Stahl, B.; Abrahamse-Berkeveld, M.; Teller, I. C., Human milk fatty acid profile across lactational stages after term and preterm delivery: A pooled data analysis. Prostaglandins, Leukotrienes and Essential Fatty Acids 2020, 156, 102023.
Fuhrer, A.; Sprenger, N.; Kurakevich, E.; Borsig, L.; Chassard, C.; Hennet, T., Milk sialyllactose influences colitis in mice through selective intestinal bacterial colonization. J. Exp. Med. 2010, 207, 2843-2854.
Gabrielli, O.; Zampini, L.; Galeazzi, T.; Padella, L.; Santoro, L.; Peila, C.; Giuliani, F.; Bertino, E.; Fabris, C.; Coppa, G. V., Preterm Milk Oligosaccharides During the First Month of Lactation. Pediatrics 2011, 128, e1520-e1531.
Gao, C.; Zhang, Y.; Liu, Y.; Feizi, T.; Chai, W., Negative-ion electrospray tandem mass spectrometry and microarray analyses of developmentally regulated antigens based on type 1 and type 2 backbone sequences. Anal. Chem. 2015, 87, 11871-11878.
Garcia, C.; Innis, S., Structure of the human milk fat globule. Lipid Technol. 2013, 25, 223-226.
Garrido, D.; Barile, D.; Mills, D. A., A Molecular Basis for Bifidobacterial Enrichment in the Infant Gastrointestinal Tract. Adv. Nutr. 2012, 3, 415S-421S.
Grollman, E. F.; Ginsburg, V., Correlation between secretor status and the occurrence of 2′-fucosyllactose in human milk. Biochem. Biophys. Res. Commun. 1967, 28, 50-53.
Guo, M.; Luo, G.; Lu, R.; Shi, W.; Cheng, H.; Lu, Y.; Jin, K.; Yang, C.; Wang, Z.; Long, J.; Xu, J.; Ni, Q.; Liu, C.; Yu, X., Distribution of Lewis and Secretor polymorphisms and corresponding CA19‐9 antigen expression in a Chinese population. FEBS Open Bio 2017, 7, 1660-1671.
Hageman, J. H. J.; Danielsen, M.; Nieuwenhuizen, A. G.; Feitsma, A. L.; Dalsgaard, T. K., Comparison of bovine milk fat and vegetable fat for infant formula: Implications for infant health. Int. Dairy J. 2019, 92, 37-49.
Haggarty, P., Effect of placental function on fatty acid requirements during pregnancy. Eur. J. Clin. Nutr. 2004, 58, 1559-1570.
Hallgren, P.; Lindberg, B. S.; Lundblad, A., Quantitation of some urinary oligosaccharides during pregnancy and lactation. J. Biol. Chem. 1977, 252, 1034-1040.
Hallgren, P.; Lundblad, A., Structural analysis of nine oligosaccharides isolated from the urine of a blood group O, nonsecretor, woman during pregnancy and lactation. J. Biol. Chem. 1977a, 252, 1014-1022.
Hallgren, P.; Lundblad, A., Structural analysis of oligosaccharides isolated from the urine of a blood group A, secretor, woman during pregnancy and lactation. J. Biol. Chem. 1977b, 252, 1023-1033.
Hamosh, M., Lipid metabolism in pediatric nutrition. Pediatric clinics of North America 1995, 42, 839-859.
Hazra, A.; Kraft, P.; Selhub, J.; Giovannucci, E. L.; Thomas, G.; Hoover, R. N.; Chanock, S. J.; Hunter, D. J., Common variants of FUT2 are associated with plasma vitamin B12 levels. Nat. Genet. 2008, 40, 1160-1162.
Hernell, O.; Bläckberg, L., Digestion of Human Milk Lipids: Physiologic Significance of sn-2 Monoacylglycerol Hydrolysis by Bile Salt-Stimulated Lipase. Pediatric Research 1982, 16, 882-885.
Hernell, O.; Bläckberg, L.; Chen, Q.; Sternby, B.; Nilsson, A., Does the bile salt-stimulated lipase of human milk have a role in the use of the milk long-chain polyunsaturated fatty acids? Journal of pediatric gastroenterology and nutrition 1993, 16, 426-431.
Hewelt-Belka, W.; Garwolinska, D.; Mlynarczyk, M.; Kot-Wasik, A., Comparative Lipidomic Study of Human Milk from Different Lactation Stages and Milk Formulas. Nutrients 2020, 12, 23.
Holman, R. C.; Stoll, B. J.; Clarke, M. J.; Glass, R. I., The epidemiology of necrotizing enterocolitis infant mortality in the United States. Am. J. Public Health 1997, 87, 2026-2031.
Hong, P.; Ninonuevo, M. R.; Lee, B.; Lebrilla, C.; Bode, L., Human milk oligosaccharides reduce HIV-1-gp120 binding to dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN). Br. J. Nutr. 2008, 101, 482-486.
Hong, Q. T.; Ruhaak, L. R.; Totten, S. M.; Smilowitz, J. T.; German, J. B.; Lebrilla, C. B., Label-Free Absolute Quantitation of Oligosaccharides Using Multiple Reaction Monitoring. Anal. Chem. 2014, 86, 2640-2647.
Horta, B. L.; Loret De Mola, C.; Victora, C. G., Long‐term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure and type 2 diabetes: a systematic review and meta‐analysis. Acta Paediatrica 2015, 104, 30-37.
Hu, M. M.; Miao, M.; Li, K. W.; Luan, Q. M.; Sun, G. L.; Zhang, T., Human milk oligosaccharide lacto-N-tetraose: Physiological functions and synthesis methods. Carbohydr. Polym. 2023, 316, 9.
Huang, P.; Farkas, T.; Marionneau, S.; Zhong, W.; Ruvoën‐Clouet, N.; Ardythe; Altaye, M.; Larry; David; Lependu, J.; Jiang, X., Noroviruses Bind to Human ABO, Lewis, and Secretor Histo–Blood Group Antigens: Identification of 4 Distinct Strain‐Specific Patterns. J. Infect. Dis. 2003, 188, 19-31.
Hughes, D. A.; Pinder, A. C.; Piper, Z.; Johnson, I. T.; Lund, E. K., Fish oil supplementation inhibits the expression of major histocompatibility complex class II molecules and adhesion molecules on human monocytes. Am. J. Clin. Nutr. 1996, 63, 267-272.
Hunt, K. M.; Foster, J. A.; Forney, L. J.; Schütte, U. M. E.; Beck, D. L.; Abdo, Z.; Fox, L. K.; Williams, J. E.; McGuire, M. K.; McGuire, M. A., Characterization of the Diversity and Temporal Stability of Bacterial Communities in Human Milk. PLOS ONE 2011, 6, e21313.
Idänpään‐Heikkilä, I.; Paul; Zopf, D.; Vullo, T.; Cahill, P.; Sokol, K.; Tuomanen, E., Oligosaccharides Interfere with the Establishment and Progression of Experimental Pneumococcal Pneumonia. J. Infect. Dis. 1997, 176, 704-712.
Idota, T.; Kawakami, H.; Murakami, Y.; Sugawara, M., Inhibition of Cholera Toxin by Human Milk Fractions and Sialyllactose. Biosci. Biotechnol. Biochem. 1995, 59, 417-419.
Indelicato, S.; Bongiorno, D.; Pitonzo, R.; Di Stefano, V.; Calabrese, V.; Indelicato, S.; Avellone, G., Triacylglycerols in edible oils: Determination, characterization, quantitation, chemometric approach and evaluation of adulterations. Journal of Chromatography a 2017, 1515, 1-16.
Innis, S. M., Dietary Triacylglycerol Structure and Its Role in Infant Nutrition. Adv Nutr 2011, 2, 275-283.
Innis, S. M., Impact of maternal diet on human milk composition and neurological development of infants. Am. J. Clin. Nutr. 2014, 99, 734S-741S.
Jantscher-Krenn, E.; Lauwaet, T.; Bliss, L. A.; Reed, S. L.; Gillin, F. D.; Bode, L., Human milk oligosaccharides reduce Entamoeba histolytica attachment and cytotoxicity in vitro. Br. J. Nutr. 2012a, 108, 1839-1846.
Jantscher-Krenn, E.; Zherebtsov, M.; Nissan, C.; Goth, K.; Guner, Y. S.; Naidu, N.; Choudhury, B.; Grishin, A. V.; Ford, H. R.; Bode, L., The human milk oligosaccharide disialyllacto-N-tetraose prevents necrotising enterocolitis in neonatal rats. Gut 2012b, 61, 1417-1425.
Jenkins, B.; West, J.; Koulman, A., A Review of Odd-Chain Fatty Acid Metabolism and the Role of Pentadecanoic Acid (C15:0) and Heptadecanoic Acid (C17:0) in Health and Disease. Molecules 2015, 20, 2425-2444.
Jensen, C. L.; Voigt, R. G.; Prager, T. C.; Zou, Y. L. L.; Fraley, J. K.; Rozelle, J. C.; Turcich, M. R.; Llorente, A. M.; Anderson, R. E.; Heird, W. C., Effects of maternal docosahexaenoic acid intake on visual function and neurodevelopment in breastfed term infants. Am. J. Clin. Nutr. 2005, 82, 125-132.
Jensen, R. G., The lipids in human milk. Prog. Lipid Res. 1996, 35, 53-92.
Jorgensen Josh M; Arnold Charles; Ashorn Per; Ashorn Ulla; Chaima David; Cheung Yin Bun; Davis Jasmine CC; Fan Yue-Mei; Goonatilleke Elisha; Kortekangas Emma; Kumwenda Chiza; Lebrilla Carlito B; Maleta Kenneth; Totten Sarah M; Wu Lauren D; G, D. K., Lipid-Based Nutrient Supplements During Pregnancy and Lactation Did Not Affect Human Milk Oligosaccharides and Bioactive Proteins in a Randomized Trial. J. Nutr. 2017, 147, 1867-1874.
Kajzer, J.; Oliver, J.; Marriage, B., Gastrointestinal Tolerance of Formula Supplemented with Oligosaccharides. Faseb J. 2016, 30, 2.
Kallio, H.; Nylund, M.; Bostrom, P.; Yang, B. R., Triacylglycerol regioisomers in human milk resolved with an algorithmic novel electrospray ionization tandem mass spectrometry method. Food Chem. 2017, 233, 351-360.
Karcz, K.; Królak-Olejnik, B., Vegan or vegetarian diet and breast milk composition – a systematic review. Critical Reviews in Food Science and Nutrition 2021, 61, 1081-1098.
Kavanaugh, D. W.; O’Callaghan, J.; Buttó, L. F.; Slattery, H.; Lane, J.; Clyne, M.; Kane, M.; Joshi, L.; Hickey, R. M., Exposure of Bifidobacterium longum subsp. infantis to Milk Oligosaccharides Increases Adhesion to Epithelial Cells and Induces a Substantial Transcriptional Response. PLOS ONE 2013, 8, e67224.
Kent, J. C.; Mitoulas, L. R.; Cregan, M. D.; Ramsay, D. T.; Doherty, D. A.; Hartmann, P. E., Volume and frequency of breastfeedings and fat content of breast milk throughout the day. Pediatrics 2006, 117, e387-e395.
Khalid, W.; Gill, P.; Arshad, M. S.; Ali, A.; Ranjha, M. M. A. N.; Mukhtar, S.; Afzal, F.; Maqbool, Z., Functional behavior of DHA and EPA in the formation of babies brain at different stages of age, and protect from different brain-related diseases. Int. J. Food Prop. 2022, 25, 1021-1044.
Kim, S. Y.; Yi, D. Y., Components of human breast milk: from macronutrient to microbiome and microRNA. Clin. exp. pediatr. 2020, 63, 301-309.
Kiyohara, M.; Tachizawa, A.; Nishimoto, M.; Kitaoka, M.; Ashida, H.; Yamamoto, K., Prebiotic Effect of Lacto-N-biose I on Bifidobacterial Growth. Biosci. Biotechnol. Biochem. 2009, 73, 1175-1179.
Kobata, A., Possible application of milk oligosaccharides for drug development. Chang Gung Med. J. 2003, 26, 621-636.
Kogelberg, H.; Piskarev, V. E.; Zhang, Y.; Lawson, A. M.; Chai, W., Determination by electrospray mass spectrometry and 1H‐NMR spectroscopy of primary structures of variously fucosylated neutral oligosaccharides based on the iso‐lacto‐N‐octaose core. Eur. J. Biochem. 2004, 271, 1172-1186.
Koletzko, B.; Rodriguez-Palmero, M.; Demmelmair, H.; Fidler, N.; Jensen, R.; Sauerwald, T., Physiological aspects of human milk lipids. Early Human Development 2001, 65, S3-S18.
Koletzko, B., Human Milk Lipids. Ann. Nutr. Metab. 2016, 69, 27-40.
Kramer, M. S.; Kakuma, R., Optimal duration of exclusive breastfeeding. Cochrane Database Syst. Rev. 2012, 2012.
Kremmyda, L.-S.; Vlachava, M.; Noakes, P. S.; Diaper, N. D.; Miles, E. A.; Calder, P. C., Atopy Risk in Infants and Children in Relation to Early Exposure to Fish, Oily Fish, or Long-Chain Omega-3 Fatty Acids: A Systematic Review. Clin. Rev. Allergy Immunol. 2011, 41, 36-66.
Kuhn, L.; Kim, H. Y.; Hsiao, L.; Nissan, C.; Kankasa, C.; Mwiya, M.; Thea, D. M.; Aldrovandi, G. M.; Bode, L., Oligosaccharide Composition of Breast Milk Influences Survival of Uninfected Children Born to HIV-Infected Mothers in Lusaka, Zambia. J. Nutr. 2015, 145, 66-72.
Kuntz, S.; Rudloff, S.; Kunz, C., Oligosaccharides from human milk influence growth-related characteristics of intestinally transformed and non-transformed intestinal cells. Br. J. Nutr. 2008, 99, 462-471.
Kunz, C.; Rudloff, S.; Baier, W.; Klein, N.; Strobel, S., Oligosaccharides in human milk: Structural, functional, and metabolic aspects. Annu. Rev. Nutr. 2000, 20, 699-722.
Kunz, C.; Meyer, C.; Collado, Y. C.; Geiger, L.; Garcia-Mantrana, Y.; Bertua-Rios, Z.; Martinez-Costa, Z.; Borsch, C.; Rudloff, S., Influence of Gestational Age, Secretor, and Lewis Blood Group Status on the Oligosaccharide Content of Human Milk. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 789-798.
López-López, A.; Castellote-Bargalló, A. I.; Campoy-Folgoso, C.; Rivero-Urgel, M.; Tormo-Carnicé, R.; Infante-Pina, D.; López-Sabater, M. C., The influence of dietary palmitic acid triacylglyceride position on the fatty acid, calcium and magnesium contents of at term newborn faeces. Early Human Development 2001, 65, S83-S94.
Lane, J. A.; Mehra, R. K.; Carrington, S. D.; Hickey, R. M., Development of biosensor-based assays to identify anti-infective oligosaccharides. Anal. Biochem. 2011, 410, 200-205.
Lewis, Z. T.; Totten, S. M.; Smilowitz, J. T.; Popovic, M.; Parker, E.; Lemay, D. G.; Van Tassell, M. L.; Miller, M. J.; Jin, Y.-S.; German, J. B.; Lebrilla, C. B.; Mills, D. A., Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 2015, 3.
Li, J.; Bi, Y.; Zheng, Y.; Cao, C.; Yu, L.; Yang, Z.; Chai, W.; Yan, J.; Lai, J.; Liang, X., Development of high-throughput UPLC-MS/MS using multiple reaction monitoring for quantitation of complex human milk oligosaccharides and application to large population survey of secretor status and Lewis blood group. Food Chem 2022, 397, 133750.
Lindquist, S.; Hernell, O., Lipid digestion and absorption in early life: an update. Current Opinion in Clinical Nutrition & Metabolic Care 2010, 13.
Lopez, C.; Madec, M. N.; Jimenez-Flores, R., Lipid rafts in the bovine milk fat globule membrane revealed by the lateral segregation of phospholipids and heterogeneous distribution of glycoproteins. Food Chem. 2010, 120, 22-33.
Mank, M.; Hauner, H.; Heck, A. J. R.; Stahl, B., Targeted LC-ESI-MS2 characterization of human milk oligosaccharide diversity at 6 to 16 weeks post-partum reveals clear staging effects and distinctive milk groups. Anal. bioanal. chem. res. 2020, 412, 6887-6907.
Manzoni, L.; Lay, L.; Schmidt, R. R., Synthesis of Lewis A and Lewis X pentasaccharides based on N-trichloroethoxycarbonyl protection. J. Carbohydr. Chem. 1998, 17, 739-758.
Marangoni, F.; Agostoni, C.; Lammardo, A. M.; Giovannini, M.; Galli, C.; Riva, E., Polyunsaturated fatty acid concentrations in human hindmilk are stable throughout 12-months of lactation and provide a sustained intake to the infant during exclusive breastfeeding: an Italian study. Br. J. Nutr. 2000, 84, 103-109.
Marcobal, A.; Barboza, M.; Erica; Pudlo, N.; Eric; Desai, P.; Carlito; Bart; David; J; Justin, Bacteroides in the Infant Gut Consume Milk Oligosaccharides via Mucus-Utilization Pathways. Cell Host Microbe 2011, 10, 507-514.
Marounek, M.; Skřivanová, E.; Rada, V., Susceptibility ofEscherichia coli to C2-C18 fatty acids. Folia Microbiol. 2003, 48, 731-735.
Marriage, B. J.; Buck, R. H.; Goehring, K. C.; Oliver, J. S.; Williams, J. A., Infants Fed a Lower Calorie Formula With 2<i>′</i>FL Show Growth and 2<i>′</i>FL Uptake Like Breast‐Fed Infants. J. Pediatr. Gastroenterol. Nutr. 2015, 61, 649-658.
Martin, J.-C.; Bougnoux, P.; Antoine, J.-M.; Lanson, M.; Couet, C., Triacylglycerol structure of human colostrum and mature milk. Lipids 1993, 28, 637-643.
Martín, R.; Heilig, H.; Zoetendal, E. G.; Jiménez, E.; Fernández, L.; Smidt, H.; Rodríguez, J. M., Cultivation-independent assessment of the bacterial diversity of breast milk among healthy women. Res. Microbiol. 2007, 158, 31-37.
Matrosovich, M. N.; Gambaryan, A. S.; Tuzikov, A. B.; Byramova, N. E.; Mochalova, L. V.; Golbraikh, A. A.; Shenderovich, M. D.; Finne, J.; Bovin, N. V., Probing of the Receptor-Binding Sites of the H1 and H3 Influenza A and Influenza B Virus Hemagglutinins by Synthetic and Natural Sialosides. Virology 1993, 196, 111-121.
McGuire, M. K.; Meehan, C. L.; McGuire, M. A.; Williams, J. E.; Foster, J.; Sellen, D. W.; Kamau-Mbuthia, E. W.; Kamundia, E. W.; Mbugua, S.; Moore, S. E.; Prentice, A. M.; Kvist, L. J.; Otoo, G. E.; Brooker, S. L.; Price, W. J.; Shafii, B.; Placek, C.; Lackey, K. A.; Robertson, B.; Manzano, S.; Ruíz, L.; Rodríguez, J. M.; Pareja, R. G.; Bode, L., What's normal? Oligosaccharide concentrations and profiles in milk produced by healthy women vary geographically. Am. J. Clin. Nutr. 2017, 105, 1086-1100.
Mechref, Y.; Kang, P.; Novotny, M. V., Differentiating structural isomers of sialylated glycans by matrix‐assisted laser desorption/ionization time‐of‐flight/time‐of‐flight tandem mass spectrometry. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up‐to‐the‐Minute Research in Mass Spectrometry 2006, 20, 1381-1389.
Miyazaki, T.; Sato, T.; Furukawa, K.; Ajisaka, K., Enzymatic Synthesis of Lacto-N-Difucohexaose I Which Binds to Helicobacter pylori. In Methods in Enzymology, Vol 480: Glycobiology, Fukuda, M., Ed. Elsevier Academic Press Inc: San Diego, 2010; Vol. 480, pp 511-524.
Mohammad, M. A.; Maningat, P.; Sunehag, A. L.; Haymond, M. W., Precursors of hexoneogenesis within the human mammary gland. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E680-E687.
Moossavi, S.; Atakora, F.; Miliku, K.; Sepehri, S.; Robertson, B.; Duan, Q. L.; Becker, A. B.; Mandhane, P. J.; Turvey, S. E.; Moraes, T. J.; Lefebvre, D. L.; Sears, M. R.; Subbarao, P.; Field, C. J.; Bode, L.; Khafipour, E.; Azad, M. B., Integrated Analysis of Human Milk Microbiota With Oligosaccharides and Fatty Acids in the CHILD Cohort. Front. Nutr. 2019, 6.
Morrow, A. L.; Ruiz-Palacios, G. M.; Altaye, M.; Jiang, X.; Guerrero, M. L.; Meinzen-Derr, J. K.; Farkas, T.; Chaturvedi, P.; Pickering, L. K.; Newburg, D. S., Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J. Pediatr. 2004, 145, 297-303.
Morrow, A. L.; Ruiz-Palacios, G. M.; Jiang, X.; Newburg, D. S., Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J. Nutr. 2005, 135, 1304-1307.
Musumeci, M.; Simpore, J.; D'Agata, A.; Sotgiu, S.; Musumeci, S., Oligosaccharides in colostrum of Italian and Burkinabe women. J. Pediatr. Gastroenterol. Nutr. 2006, 43, 372-378.
Mysore, J. V.; Wigginton, T.; Simon, P. M.; Zopf, D.; Heman-Ackah, L. M.; Dubois, A., Treatment of Helicobacter pylori infection in rhesus monkeys using a novel antiadhesion compound. Gastroenterology 1999, 117, 1316-1325.
Nakai, S. A.; Siebert, K. J., Validation of bacterial growth inhibition models based on molecular properties of organic acids. Int. J. Food Microbiol. 2003, 86, 249-255.
Nejrup, R. G.; Licht, T. R.; Hellgren, L. I., Fatty acid composition and phospholipid types used in infant formulas modifies the establishment of human gut bacteria in germ-free mice. Sci. Rep. 2017, 7.
Neu, J.; Walker, W. A., Necrotizing Enterocolitis. N. Engl. J. Med. 2011, 364, 255-264.
Newburg, D. S., Oligosaccharides and Glycoconjugates in Human Milk: Their Role in Host Defense. J. Mammary Gland Biol. Neoplasia. 1996, 1, 271-283.
Newburg, D. S.; Ruiz-Palacios, G. M.; Altaye, M.; Chaturvedi, P.; Meinzen-Derr, J.; Guerrero, M. D.; Morrow, A. L., Innate protection conferred by fucosylated oligosaccharides of human milk against diarrhea in breastfed infants. Glycobiology 2004, 14, 253-263.
Newburg, D. S.; Ruiz-Palacios, G. M.; Morrow, A. L., Human milk glycans protect infants against enteric pathogens. Annu. Rev. Nutr. 2005, 25, 37-58.
Newburg, D. S., Glycobiology of human milk. Biokhimiya 2013, 78, 771-785.
Nguyen, M. T. T.; Kim, J.; Seo, N.; Lee, A. H.; Kim, Y.-K.; Jung, J. A.; Li, D.; To, X. H. M.; Huynh, K. T. N.; Van Le, T.; Israr, B.; Nazir, A.; Seo, J.-A.; Lee, D.; An, H. J.; Kim, J., Comprehensive analysis of fatty acids in human milk of four Asian countries. J. Dairy Sci. 2021, 104, 6496-6507.
Nishimura, R. Y.; de Castro, G. S.; Jordão Junior, A. A.; Sartorelli, D. S., Breast milk fatty acid composition of women living far from the coastal area in Brazil. Jornal de pediatria 2013, 89, 263-268.
Notarbartolo, V.; Giuffrè, M.; Montante, C.; Corsello, G.; Carta, M., Composition of Human Breast Milk Microbiota and Its Role in Children’s Health. Pediatr. Gastroenterol. Hepatol. Nutr. 2022, 25, 194.
Odle, J., New insights into the utilization of medium-chain triglycerides by the neonate: Observations from a piglet model. J. Nutr. 1997, 127, 1061-1067.
Olivares, M.; Albrecht, S.; De Palma, G.; Ferrer, M. D.; Castillejo, G.; Schols, H. A.; Sanz, Y., Human milk composition differs in healthy mothers and mothers with celiac disease. European Journal of Nutrition 2015, 54, 119-128.
Oriol, R.; Le Pendu, J.; Mollicone, R., Genetics of ABO, H, Lewis, X and Related Antigens. Vox Sang. 1986, 51, 161-171.
Oursel, S.; Cholet, S.; Junot, C.; Fenaille, F., Comparative analysis of native and permethylated human milk oligosaccharides by liquid chromatography coupled to high resolution mass spectrometry. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2017, 1071, 49-57.
Owen, C. G.; Martin, R. M.; Whincup, P. H.; Smith, G. D.; Cook, D. G., Effect of Infant Feeding on the Risk of Obesity Across the Life Course: A Quantitative Review of Published Evidence. Pediatrics 2005, 115, 1367-1377.
Owen, C. G.; Martin, R. M.; Whincup, P. H.; Smith, G. D.; Cook, D. G., Does breastfeeding influence risk of type 2 diabetes in later life? A quantitative analysis of published evidence. Am. J. Clin. Nutr. 2006, 84, 1043-1054.
Parschat, K.; Oehme, A.; Leuschner, J.; Jennewein, S.; Parkot, J., A safety evaluation of mixed human milk oligosaccharides in rats. Food Chem. Toxicol. 2020, 136, 12.
Petschacher, B.; Nidetzky, B., Biotechnological production of fucosylated human milk oligosaccharides: Prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems. J. Biotechnol. 2016, 235, 61-83.
Pfenninger, A.; Karas, M.; Finke, B.; Stahl, B., Structural analysis of underivatized neutral human milk oligosaccharides in the negative ion mode by nano-electrospray MS n (part 2: application to isomeric mixtures). J. Am. Soc. Mass. Spectrom. 2002a, 13, 1341-1348.
Pfenninger, A.; Karas, M.; Finke, B.; Stahl, B., Structural analysis of underivatized neutral human milk oligosaccharides in the negative ion mode by nano-electrospray MSn (Part 1: Methodology). J. Am. Soc. Mass. Spectrom. 2002b, 13, 1331-1340.
Phipps, K. R.; Baldwin, N.; Lynch, B.; Flaxmer, J.; Soltésová, A.; Gilby, B.; Miks, M. H.; Röhrig, C. H., Safety evaluation of a mixture of the human-identical milk oligosaccharides 2′-fucosyllactose and difucosyllactose. Food Chem. Toxicol. 2018, 120, 552-565.
Pond, C. M., THE SIGNIFICANCE OF LACTATION IN EVOLUTION OF MAMMALS. Evolution 1977, 31, 177-199.
Prentice, A.; Prentice, A. M.; Whitehead, R. G., Breast-milk fat concentrations of rural African women. Br. J. Nutr. 1981, 45, 495-503.
Prentice, A. M.; Roberts, S. B.; Watkinson, M.; Whitehead, R. G.; Paul, A. A.; Prentice, A.; Watkinson, A. A., DIETARY SUPPLEMENTATION OF GAMBIAN NURSING MOTHERS AND LACTATIONAL PERFORMANCE. Lancet 1980, 2, 886-888.
Qi, C.; Sun, J.; Xia, Y.; Yu, R.; Wei, W.; Xiang, J.; Jin, Q.; Xiao, H.; Wang, X., Fatty Acid Profile and the sn-2 Position Distribution in Triacylglycerols of Breast Milk during Different Lactation Stages. J. Agric. Food. Chem. 2018, 66, 3118-3126.
Qiao, Y.; Feng, J. L.; Yang, J. P.; Gu, G. X., The Relationship between Dietary Vitamin A Intake and the Levels of Sialic Acid in the Breast Milk of Lactating Women. J. Nutr. Sci. Vitaminol. 2013, 59, 347-351.
Quinlan, P.; Lockton, S.; Irwin, J.; Lucas, A., The relationship between stool hardness and stool composition in breast-and formula-fed infants. Journal of pediatric gastroenterology and nutrition 1995, 20, 81-90.
Quinn, E. A.; Largado, F.; Power, M.; Kuzawa, C. W., Predictors of breast milk macronutrient composition in filipino mothers. Am. J. Hum. Biol. 2012, 24, 533-540.
Ramakrishnan, B.; Boeggeman, E.; Qasba, P. K., β-1,4-galactosyltransferase and lactose synthase:: Molecular mechanical devices. Biochem. Biophys. Res. Commun. 2002, 291, 1113-1118.
Remoroza, C. A.; Mak, T. D.; De Leoz, M. L. A.; Mirokhin, Y. A.; Stein, S. E., Creating a Mass Spectral Reference Library for Oligosaccharides in Human Milk. Anal. Chem. 2018, 90, 8977-8988.
Reverri, E.; Devitt, A.; Kajzer, J.; Baggs, G.; Borschel, M., Review of the Clinical Experiences of Feeding Infants Formula Containing the Human Milk Oligosaccharide 2′-Fucosyllactose. Nutrients 2018, 10, 1346.
Ricke, S. C., Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult. Sci. 2003, 82, 632-639.
Roberts, L. D.; Virtue, S.; Vidal-Puig, A.; Nicholls, A. W.; Griffin, J. L., Metabolic phenotyping of a model of adipocyte differentiation. Physiol. Genomics 2009, 39, 109-119.
Rocquelin, G.; Tapsoba, S.; Dop, M. C.; Mbemba, F.; Traissac, P.; Martin-Prével, Y., Lipid content and essential fatty acid (EFA) composition of mature Congolese breast milk are influenced by mothers' nutritional status: Impact on infants' EFA supply. European Journal of Clinical Nutrition 1998, 52, 164-171.
Rozé, J. C.; Hartweg, M.; Simon, L.; Billard, H.; Chen, Y. P.; Austin, S.; Boscher, C.; Moyon, T.; Darmaun, D.; Rodenas, C. L. G.; Boquien, C. Y., Human milk oligosaccharides in breast milk and 2-year outcome in preterm infants: An exploratory analysis. Clin. Nutr. 2022, 41, 1896-1905.
Rudloff, S.; Obermeier, S.; Borsch, C.; Pohlentz, G.; Hartmann, R.; Brösicke, H.; Lentze, M. J.; Kunz, C., Incorporation of orally applied 13C-galactose into milk lactose and oligosaccharides. Glycobiology 2006, 16, 477-487.
Ruhaak, L. R.; Deelder, A. M.; Wuhrer, M., Oligosaccharide analysis by graphitized carbon liquid chromatography–mass spectrometry. Anal. Bioanal. Chem. 2009, 394, 163-174.
Ruiz-Palacios, G. M.; Cervantes, L. E.; Ramos, P.; Chavez-Munguia, B.; Newburg, D. S., Campylobacter jejuni Binds Intestinal H(O) Antigen (Fucα1, 2Galβ1, 4GlcNAc), and Fucosyloligosaccharides of Human Milk Inhibit Its Binding and Infection. J. Biol. Chem. 2003, 278, 14112-14120.
Sala‐Vila, A.; Miles, E. A.; Calder, P. C., Fatty acid composition abnormalities in atopic disease: evidence explored and role in the disease process examined. Clin. Exp. Allergy 2008, 38, 1432-1450.
Samuel, T. M.; Binia, A.; De Castro, C. A.; Thakkar, S. K.; Billeaud, C.; Agosti, M.; Al-Jashi, I.; Costeira, M. J.; Marchini, G.; Martínez-Costa, C.; Picaud, J.-C.; Stiris, T.; Stoicescu, S.-M.; Vanpeé, M.; Domellöf, M.; Austin, S.; Sprenger, N., Impact of maternal characteristics on human milk oligosaccharide composition over the first 4 months of lactation in a cohort of healthy European mothers. Sci. Rep. 2019, 9.
Sanders, T. A. B.; Ellis, F. R.; Dickerson, J. W. T., Studies of vegans: the fatty acid composition of plasma choline phosphoglycerides, erythrocytes, adipose tissue, and breast milk, and some indicators of susceptibility to ischemic heart disease in vegans and omnivore controls. The American Journal of Clinical Nutrition 1978, 31, 805-813.
Sanders, T. A. B.; Reddy, S., The influence of a vegetarian diet on the fatty acid composition of human milk and the essential fatty acid status of the infant. The Journal of Pediatrics 1992, 120, S71-S77.
Schmidt, E. B.; Pedersen, J. O.; Ekelund, S.; Grunnet, N.; Jersild, C.; Dyerberg, J., Cod liver oil inhibits neutrophil and monocyte chemotaxis in healthy males. Atherosclerosis 1989, 77, 53-57.
Schmidt, E. B.; Varming, K.; Pedersen, J. O.; Lervang, H. H.; Grunnet, N.; Jersild, C.; Dyerberg, J., Long-term supplementation with n-3 fatty acids, II: effect on neutrophil and monocyte chemotaxis. Scand. J. Clin. Lab. Invest. 1992, 52, 229-236.
Sela, D. A.; Garrido, D.; Lerno, L.; Wu, S.; Tan, K.; Eom, H.-J.; Joachimiak, A.; Lebrilla, C. B.; Mills, D. A., Bifidobacterium longum subsp. infantis ATCC 15697 α-Fucosidases Are Active on Fucosylated Human Milk Oligosaccharides. Appl. Environ. Microbiol. 2012, 78, 795-803.
Skrivanova, E.; Marounek, M.; Benda, V.; Brezina, P., Susceptibility of Escherichia coli, Salmonella sp. and Clostridium perfringensto organic acids and monolaurin. Vet. Med. 2006, 51, 81-88.
Small, D. M., The effects of glyceride structure on absorption and metabolism. Annual review of nutrition 1991, 11, 413-434.
Smilowitz, J. T.; Lebrilla, C. B.; Mills, D. A.; German, J. B.; Freeman, S. L., Breast Milk Oligosaccharides: Structure-Function Relationships in the Neonate. Annu. Rev. Nutr. 2014, 34, 143-169.
Smit, E. N.; Martini, I. A.; Mulder, H.; Boersma, E. R.; Muskiet, F. A. J., Estimated biological variation of the mature human milk fatty acid composition. Prostaglandins Leukot. Essent. Fat. Acids 2002, 66, 549-555.
Smithers, L. G.; Makrides, M.; Gibson, R. A., Human milk fatty acids from lactating mothers of preterm infants: A study revealing wide intra- and inter-individual variation. Prostaglandins Leukot. Essent. Fat. Acids 2010, 83, 9-13.
Sperling, R. I.; Benincaso, A. I.; Knoell, C. T.; Larkin, J. K.; Austen, K. F.; Robinson, D. R., Dietary omega-3 polyunsaturated fatty acids inhibit phosphoinositide formation and chemotaxis in neutrophils. J. clin. invest. 1993, 91, 651-660.
Spicer, S. K.; Gaddy, J. A.; Townsend, S. D., Recent advances on human milk oligosaccharide antimicrobial activity. Curr. Opin. Chem. Biol. 2022, 71, 7.
Stahl, B.; Thurl, S.; Henker, J.; Siegel, M.; Finke, B.; Sawatzki, G., Detection of Four Human Milk Groups with Respect to Lewis-Bloodgroup-Dependent Oligosaccharides by Serologic and Chromatographic Analysis. In Bioactive Components of Human Milk, Springer US: 2001; pp 299-306.
Stangier, K.; Palcic, M. M.; Bundle, D. R.; Hindsgaul, O.; Thiem, J., Fucosyltransferase-catalyzed formation of L-galactosylated Lewis structures. Carbohydr. Res. 1997, 305, 511-515.
Stehle, T.; Yan, Y. W.; Benjamin, T. L.; Harrison, S. C., Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature 1994, 369, 160-163.
Stepans, M. B. F.; Wilhelm, S. L.; Hertzog, M.; Rodehorst, T. K. C.; Blaney, S.; Clemens, B.; Polak, J. J.; Newburg, D. S., Early Consumption of Human Milk Oligosaccharides Is Inversely Related to Subsequent Risk of Respiratory and Enteric Disease in Infants. Breastfeeding Med. 2006, 1, 207-215.
Stillwell, W., Chapter 14 - Membrane Biogenesis: Fatty Acids. In An Introduction to Biological Membranes (Second Edition), Stillwell, W., Ed. Elsevier: 2016; pp 315-329.
Stins, M. F.; Prasadarao, N. V.; Ibric, L.; Wass, C. A.; Luckett, P.; Kim, K. S., Binding characteristics of S fimbriated Escherichia coli to isolated brain microvascular endothelial cells. Am. J. Pathol. 1994, 145, 1228-1236.
Straarup, E. M.; Lauritzen, L.; Faerk, J.; Høy Deceased, C. E.; Michaelsen, K. F., The stereospecific triacylglycerol structures and Fatty Acid profiles of human milk and infant formulas. J Pediatr Gastroenterol Nutr 2006, 42, 293-9.
Strode, M. A.; Dewey, K. G.; Lönnerdal, B., Effects of Short‐Term Caloric Restriction on Lactational Performance of Well‐Nourished Women. Acta Paediatr. 1986, 75, 222-229.
Sunehag, A. L.; Louie, K.; Bier, J. L.; Tigas, S.; Haymond, M. W., Hexoneogenesis in the Human Breast during Lactation. J. Clin. Endocrinol. Metab. 2002, 87, 297-301.
Takamura, T.; Chiba, T.; Tejima, S., Chemical Modification of Lactose. XVI. : Synthesis of Lacto-N-neohexaose. Chem. Pharm. Bull. 1981, 29, 2270-2276.
Talley, J. T.; Mohiuddin, S. S., Biochemistry, Fatty Acid Oxidation. In StatPearls, 2023.
Tanwar, V. S.; Chand, M. P.; Kumar, J.; Garg, G.; Seth, S.; Karthikeyan, G.; Sengupta, S., Common variant in FUT2 gene is associated with levels of vitamin B12 in Indian population. Gene 2013, 515, 224-228.
Tao, N.; Depeters, E. J.; Freeman, S.; German, J. B.; Grimm, R.; Lebrilla, C. B., Bovine Milk Glycome. J. Dairy Sci. 2008, 91, 3768-3778.
Terrazas, L. I.; Walsh, K. L.; Piskorska, D.; McGuire, E.; Harn, D. A., The Schistosome Oligosaccharide Lacto-N-neotetraose Expands Gr1+ CellsThat Secrete Anti-inammatory Cytokines and Inhibit Proliferation of NaiveCD4+ Cells: A Potential Mechanism for Immune Polarization in HelminthInfections. J. Immunol. 2001, 167, 5294-5303.
Thakkar, S. K.; Giuffrida, F.; Cristina, C. H.; De Castro, C. A.; Mukherjee, R.; Tran, L. A.; Steenhout, P.; Lee, L. Y.; Destaillats, F., Dynamics of human milk nutrient composition of women from singapore with a special focus on lipids. Am. J. Hum. Biol. 2013, 25, 770-779.
Thormar, H.; Isaacs, C. E.; Brown, H. R.; Barshatzky, M. R.; Pessolano, T., Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob. Agents Chemother. 1987, 31, 27-31.
Thum, C.; Wall, C. R.; Weiss, G. A.; Wang, W.; Szeto, I. M.-Y.; Day, L., Changes in HMO Concentrations throughout Lactation: Influencing Factors, Health Effects and Opportunities. Nutrients 2021, 13, 2272.
Thurl, S.; Henker, J.; Siegel, M.; Tovar, K.; Sawatzki, G., Detection of four human milk groups with respect to Lewis blood group dependent oligosaccharides. Glycoconj. J. 1997, 14, 795-799.
Thurl, S.; Munzert, M.; Henker, J.; Boehm, G.; Müller-Werner, B.; Jelinek, J.; Stahl, B., Variation of human milk oligosaccharides in relation to milk groups and lactational periods. Br. J. Nutr. 2010, 104, 1261-1271.
Tigas, S.; Sunehag, A.; Haymond, M. W., Metabolic Adaptation to Feeding and Fasting during Lactation in Humans. J. Clin. Endocrinol. Metab. 2002, 87, 302-307.
Timby, N.; Domellöf, E.; Hernell, O.; Lönnerdal, B.; Domellöf, M., Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: a randomized controlled trial. Am. J. Clin. Nutr. 2014, 99, 860-868.
Tinoco, S. M. B.; Sichieri, R.; Setta, C. L.; Moura, A. S.; Tavares Do Carmo, M. D. G., Trans fatty acids from milk of Brazilian mothers of premature infants. J. Paediatr. Child Health 2008, 44, 50-56.
Tong, H. H.; McIver, M. A.; Fisher, L. M.; DeMaria, T. F., Effect of lacto-N-neotetraose, asialoganglioside-GM1 and neuraminidase on adherence of otitis media-associated serotypes of Streptococcus pneumoniae to chinchilla tracheal epithelium. Microb. Pathog. 1999, 26, 111-119.
Tonon, K. M.; de Morais, M. B.; Abrao, A.; Miranda, A.; Morais, T. B., Maternal and Infant Factors Associated with Human Milk Oligosaccharides Concentrations According to Secretor and Lewis Phenotypes. Nutrients 2019a, 11, 23.
Tonon, K. M.; Miranda, A.; Abrao, A.; de Morais, M. B.; Morais, T. B., Validation and application of a method for the simultaneous absolute quantification of 16 neutral and acidic human milk oligosaccharides by graphitized carbon liquid chromatography - electrospray ionization - mass spectrometry. Food Chem. 2019b, 274, 691-697.
Totten, S. M.; Zivkovic, A. M.; Wu, S.; Ngyuen, U.; Freeman, S. L.; Ruhaak, L. R.; Darboe, M. K.; German, J. B.; Prentice, A. M.; Lebrilla, C. B., Comprehensive Profiles of Human Milk Oligosaccharides Yield Highly Sensitive and Specific Markers for Determining Secretor Status in Lactating Mothers. J. Proteome Res. 2012, 11, 6124-6133.
Tsuchida, A.; Okajima, T.; Furukawa, K.; Ando, T.; Ishida, H.; Yoshida, A.; Nakamura, Y.; Kannagi, R.; Kiso, M.; Furukawa, K., Synthesis of Disialyl Lewis a (Lea) Structure in Colon Cancer Cell Lines by a Sialyltransferase, ST6GalNAc VI, Responsible for the Synthesis of α-Series Gangliosides. J. Biol. Chem. 2003, 278, 22787-22794.
Tu, A.; Ma, Q.; Bai, H.; Du, Z., A comparative study of triacylglycerol composition in Chinese human milk within different lactation stages and imported infant formula by SFC coupled with Q-TOF-MS. Food Chem. 2017, 221, 555-567.
Uauy, R.; Dangour, A. D., Nutrition in Brain Development and Aging: Role of Essential Fatty Acids. Nutr. Rev. 2006, 64, S24-S33.
van Berlo, D.; Wallinga, A. E.; van Acker, F. A.; Delsing, D. J., Safety assessment of biotechnologically produced 2′-Fucosyllactose, a novel food additive. Food Chem. Toxicol. 2018, 118, 84-93.
Van Leeuwen, S. S.; Stoutjesdijk, E.; Ten Kate, G. A.; Schaafsma, A.; Dijck-Brouwer, J.; Muskiet, F. A. J.; Dijkhuizen, L., Regional variations in human milk oligosaccharides in Vietnam suggest FucTx activity besides FucT2 and FucT3. Sci. Rep. 2018, 8.
Van Niekerk, E.; Autran, C. A.; Nel, D. G.; Kirsten, G. F.; Blaauw, R.; Bode, L., Human Milk Oligosaccharides Differ between HIV-Infected and HIV-Uninfected Mothers and Are Related to Necrotizing Enterocolitis Incidence in Their Preterm Very-Low-Birth-Weight Infants. J. Nutr. 2014, 144, 1227-1233.
Vandenplas, Y.; Berger, B.; Carnielli, V.; Ksiazyk, J.; Lagström, H.; Sanchez Luna, M.; Migacheva, N.; Mosselmans, J.-M.; Picaud, J.-C.; Possner, M.; Singhal, A.; Wabitsch, M., Human Milk Oligosaccharides: 2′-Fucosyllactose (2′-FL) and Lacto-N-Neotetraose (LNnT) in Infant Formula. Nutrients 2018, 10, 1161.
Victora, C. G.; Bahl, R.; Barros, A. J. D.; França, G. V. A.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M. J.; Walker, N.; Rollins, N. C.; Lancet Breastfeeding Series, G., Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475-490.
Virkola, R.; Parkkinen, J.; Hacker, J.; Korhonen, T. K., Sialyloligosaccharide chains of laminin as an extracellular matrix target for S fimbriae of Escherichia coli. Infect. Immun. 1993, 61, 4480-4484.
Wan, Z.-X.; Wang, X.-L.; Xu, L.; Geng, Q.; Zhang, Y., Lipid content and fatty acids composition of mature human milk in rural North China. Br. J. Nutr. 2010, 103, 913-916.
Wang, B.; Brand-Miller, J.; McVeagh, P.; Petocz, P., Concentration and distribution of sialic acid in human milk and infant formulas. Am. J. Clin. Nutr. 2001, 74, 510-515.
Wang, B., Molecular Mechanism Underlying Sialic Acid as an Essential Nutrient for Brain Development and Cognition. Adv. Nutr. 2012, 3, 465S-472S.
Wang, L. N.; Li, X. D.; Liu, L.; Zhang, H. D.; Zhang, Y.; Chang, Y. H.; Zhu, Q. P., Comparative lipidomics analysis of human, bovine and caprine milk by UHPLC-Q-TOF-MS. Food Chem. 2020a, 310, 8.
Wang, M.; Zhao, Z.; Zhao, A.; Zhang, J.; Wu, W.; Ren, Z.; Wang, P.; Zhang, Y., Neutral Human Milk Oligosaccharides Are Associated with Multiple Fixed and Modifiable Maternal and Infant Characteristics. Nutrients 2020b, 12, 826.
Wang, X. D.; Zhu, H. Q.; Zhang, W. Y.; Zhang, Y. M.; Zhao, P.; Zhang, S. W.; Pang, X. Y.; Vervoort, J.; Lu, J.; Lv, J. P., Triglyceride and fatty acid composition of ruminants milk, human milk, and infant formulae. J. Food Compos. Anal. 2022, 106, 8.
Wei, W.; Jin, Q.; Wang, X., Human milk fat substitutes: Past achievements and current trends. Prog. Lipid Res. 2019, 74, 69-86.
Weichert, S.; Jennewein, S.; Hüfner, E.; Weiss, C.; Borkowski, J.; Putze, J.; Schroten, H., Bioengineered 2′-fucosyllactose and 3-fucosyllactose inhibit the adhesion of <i>Pseudomonas aeruginosa</i> and enteric pathogens to human intestinal and respiratory cell lines. Nutr. Res. 2013, 33, 831-838.
West, A. L.; Miles, E. A.; Lillycrop, K. A.; Han, L.; Sayanova, O.; Napier, J. A.; Calder, P. C.; Burdge, G. C., Postprandial incorporation of EPA and DHA from transgenic Camelina sativa oil into blood lipids is equivalent to that from fish oil in healthy humans. Br. J. Nutr. 2019, 121, 1235-1246.
Wheeler, S. F.; Harvey, D. J., Negative Ion Mass Spectrometry of Sialylated Carbohydrates:  Discrimination of N-Acetylneuraminic Acid Linkages by MALDI-TOF and ESI-TOF Mass Spectrometry. Anal. Chem. 2000, 72, 5027-5039.
Williams, J. E.; McGuire, M. K.; Meehan, C. L.; McGuire, M. A.; Brooker, S. L.; Kamau-Mbuthia, E. W.; Kamundia, E. W.; Mbugua, S.; Moore, S. E.; Prentice, A. M.; Otoo, G. E.; Rodríguez, J. M.; Pareja, R. G.; Foster, J. A.; Sellen, D. W.; Kita, D. G.; Neibergs, H. L.; Murdoch, B. M., Key genetic variants associated with variation of milk oligosaccharides from diverse human populations. Genomics 2021, 113, 1867-1875.
Wu, J. Y.; Wu, S. H.; Huo, J. H.; Ruan, H. B.; Xu, X. F.; Hao, Z. X.; Wei, Y. A., Systematic Characterization and Longitudinal Study Reveal Distinguishing Features of Human Milk Oligosaccharides in China. Curr. Dev. Nutr. 2020a, 4, 10.
Wu, S. A.; Grimm, R.; German, J. B.; Lebrilla, C. B., Annotation and Structural Analysis of Sialylated Human Milk Oligosaccharides. J. Proteome Res. 2011, 10, 856-868.
Wu, T. C.; Lau, B. H.; Chen, P. H.; Wu, L. T.; Tang, R. B., Fatty Acid Composition of Taiwanese Human Milk. J. Chin. Med. Assoc. 2010, 73, 581-588.
Wu, W.-C.; Lin, H.-C.; Liao, W.-L.; Tsai, Y.-Y.; Chen, A.-C.; Chen, H.-C.; Lin, H.-Y.; Liao, L.-N.; Chao, P.-M., FADS Genetic Variants in Taiwanese Modify Association of DHA Intake and Its Proportions in Human Milk. Nutrients 2020b, 12, 543.
Xiao, J.-Z.; Takahashi, S.; Nishimoto, M.; Odamaki, T.; Yaeshima, T.; Iwatsuki, K.; Kitaoka, M., Distribution of In Vitro fermentation ability of lacto-TV-Biose I, a major building block of human milk oligosaccharides, in bifidobacteria! strains. Appl. Environ. Microbiol. 2010, 76, 54-59.
Xu, G.; Davis, J. C. C.; Goonatilleke, E.; Smilowitz, J. T.; German, J. B.; Lebrilla, C. B., Absolute Quantitation of Human Milk Oligosaccharides Reveals Phenotypic Variations during Lactation. J. Nutr. 2017, 147, 117-124.
Xu, H. T.; Zhao, Y. F.; Lian, Z. X.; Fan, B. L.; Zhao, Z. H.; Yu, S. Y.; Dai, Y. P.; Wang, L. L.; Niu, H. L.; Li, N.; Hammarström, L.; Borén, T.; Sjöström, R., Effects of fucosylated milk of goat and mouse on Helicobacter pylori binding to Lewis b antigen. World J. Gastroenterol. 2004, 10, 2063-2066.
Xu, L. P.; Chen, W. J.; Wang, X. Y.; Yu, Z. B.; Han, S. P., Comparative Lipidomic Analyses Reveal Different Protections in Preterm and Term Breast Milk for Infants. Front. Pediatr. 2020, 8.
Yan, J. Y.; Ding, J. J.; Jin, G. W.; Duan, Z. J.; Yang, F.; Li, D. D.; Zhou, H.; Li, M.; Guo, Z. M.; Chai, W. G.; Liang, X. M., Profiling of Human Milk Oligosaccharides for Lewis Epitopes and Secretor Status by Electrostatic Repulsion Hydrophilic Interaction Chromatography Coupled with Negative-Ion Electrospray Tandem Mass Spectrometry. Anal. Chem. 2019, 91, 8199-8206.
Yaron, S.; Shachar, D.; Abramas, L.; Riskin, A.; Bader, D.; Litmanovitz, I.; Bar-Yoseph, F.; Cohen, T.; Levi, L.; Lifshitz, Y.; Shamir, R.; Shaoul, R., Effect of High β-Palmitate Content in Infant Formula on the Intestinal Microbiota of Term Infants. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 376-381.
Yu, Z.-T.; Chen, C.; Kling, D. E.; Liu, B.; McCoy, J. M.; Merighi, M.; Heidtman, M.; Newburg, D. S., The principal fucosylated oligosaccharides of human milk exhibit prebiotic properties on cultured infant microbiota. Glycobiology 2013, 23, 169-177.
Yuan, T. L.; Zhang, H.; Wang, X. S.; Yu, R. Q.; Zhou, Q.; Wei, W.; Wang, X. G.; Jin, Q. Z., Triacylglycerol containing medium-chain fatty acids (MCFA-TAG): The gap between human milk and infant formulas. Int. Dairy J. 2019, 99, 8.
Yuan, T. L.; Wei, W.; Wang, X. G.; Jin, Q. Z., Biosynthesis of structured lipids enriched with medium and long-chain triacylglycerols for human milk fat substitute. LWT 2020, 128, 7.
Zavaleta, N.; Kvistgaard, A. S.; Graverholt, G.; Respicio, G.; Guija, H.; Valencia, N.; Lönnerdal, B., Efficacy of an MFGM-enriched Complementary Food in Diarrhea, Anemia, and Micronutrient Status in Infants. J. Pediatr. Gastroenterol. Nutr. 2011, 53, 561-568.
Zhang, X. H.; Qi, C.; Zhang, Y. R.; Wei, W.; Jin, Q. Z.; Xu, Z. M.; Tao, G. J.; Wang, X. G., Identification and quantification of triacylglycerols in human milk fat using ultra-performance convergence chromatography and quadrupole time-of-flight mass spectrometery with supercritical carbon dioxide as a mobile phase. Food Chem. 2019, 275, 712-720.
Zhao, P.; Zhang, S.; Liu, L.; Pang, X.; Yang, Y.; Lu, J.; Lv, J., Differences in the Triacylglycerol and Fatty Acid Compositions of Human Colostrum and Mature Milk. Journal of Agricultural and Food Chemistry 2018, 66, 4571-4579.
Zhao, Y.; Joshi-Barve, S.; Barve, S.; Chen, L. H., Eicosapentaenoic acid prevents LPS-induced TNF-α expression by preventing NF-κB activation. J. Am. Coll. Nutr. 2004, 23, 71-78.
Zhu, H. Q.; Liang, A. M.; Wang, X. D.; Zhang, W. Y.; Zhang, Y. M.; He, X. Y.; Liu, Y.; Jiang, S. L.; Lu, J.; Lv, J. P., Comparative Analysis of Triglycerides From Different Regions and Mature Lactation Periods in Chinese Human Milk Project (CHMP) Study. Front. Nutr. 2021, 8, 10.
Zou, L.; Pande, G.; Akoh, C. C., Infant Formula Fat Analogs and Human Milk Fat: New Focus on Infant Developmental Needs. Annual Review of Food Science and Technology 2016, 7, 139-165.
Zou, X.; Huang, J.; Jin, Q.; Guo, Z.; Liu, Y.; Cheong, L.; Xu, X.; Wang, X., Lipid Composition Analysis of Milk Fats from Different Mammalian Species: Potential for Use as Human Milk Fat Substitutes. J. Agric. Food. Chem. 2013, 61, 7070-7080.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97204-
dc.description.abstract母乳是嬰兒理想的營養來源,母乳寡醣與脂質是母乳中第三及第二豐富的成分。本研究使用液相層析串聯質譜法解析母乳中21種母乳寡醣以及三酸甘油酯中奇數鏈脂肪酸、EPA和DHA脂肪酸之分布。樣品來自成大醫院與臺大醫院招募118位母親所提供的319個母乳,其分別在出生後第 1、2.5、4、5、8、16、24和52週進行收集。本研究以不同的特徵結構對母乳寡醣進行分類並討論泌乳期間其在母乳中的分布情情況,並藉由母乳寡醣上的結構特徵碎片辨別抗原表位以推測母親之基因型。臺灣母親Se+Le+型的比例高達9成,且觀察到Se−Le+基因型的臺灣母親其母乳中唾液酸化母乳寡醣的占比較全球平均結果低。最後則透過相關性分析探討相同分泌狀態下母嬰特徵與母親食用之營養補充品對母乳寡醣分布的影響。另一方面,本研究於臺灣婦女的母乳中鑑別出86個三酸甘油酯,包含4種含有奇數鏈脂肪酸之三酸甘油酯β-PPeO、β-PeOO、β-MaPO和β-OMaO,以及4種含有含有EPA或DHA之三酸甘油酯β-PODh、β-OPDh、β-OEpO和β-OOEp。其中在甘油骨幹的sn-2位置上具有Pentadecylic acid (C15:0)、Margaric acid (C17:0) 和Eicosapentaenoic acid (EPA, 20:5 n-3) 的酯化。此外觀察到母親的飲食習慣與基因可能不會影響母乳中含有EPA或DHA之三酸甘油酯。zh_TW
dc.description.abstractHuman milk (HM) provides newborns with ideal natural nutrition. Human milk oligosaccharides (HMOs) and lipids are the third and second most abundant components in breast milk. Liquid chromatography-tandem mass spectrometry was used to identify 21 HMOs and odd-chain fatty acids, EPA, and DHA in triglycerides (TG) of HM. A total of 237 human milk samples were obtained from 89 women who delivered healthy full-term infants by NCKUH and NTUH recruited. The milk sample were collected on postnatal week 1, 2.5, 4, 5, 8,16, 24 and 52. We classified HMOs based on different characteristic fragments to discuss their profile in HM during lactation. Antigenic epitopes on the HMOs were also identified, which inferred the Se+Le+ type was up to 90% of Taiwanese mothers. Additionally, the fraction of sialylated HMOs in HM of Taiwanese mothers with Se−Le+ genotype is lower than the global average. Finally, correlation analysis was conducted to explore the effects of maternal-infant characteristics and dietary supplements consumed by mothers on the profile of HMOs in the same mike group. On the other hand, this study identified 86 TGs in HM of Taiwanese women, including 4 TGs containing odd-chain fatty acids, β-PPeO, β-PeOO, β-MaPO, and β-OMaO, and 4 TG s containing Eicosapentaenoic acid (EPA, 20:5 n-3) or Docosahexaenoic acid (DHA, 22:6 n-3), which are β-PODh, β-OPDh, β-OEpO and β-OOEp. Among these TGs, only Pentadecylic acid (C15:0), Margaric acid (C17:0) and EPA esterified at the sn-2 position of the glycerol backbone. In addition, it was observed that the mother's dietary patterns and genetic background may not affect the level of the TGs with EPA or DHA in HM.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:39:55Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-27T16:39:55Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
目次 iii
圖次 ix
表次 xi
附圖目次 xiii
附表目次 xv
第一章、前言 1
第二章、文獻回顧 2
第一節、母乳 (human milk) 2
第二節、母乳寡醣 (human milk oligosaccharides, HMOs) 5
一、母乳寡醣的結構組成 8
二、母乳寡醣的合成 17
1. 乳糖的合成 17
2. 母乳寡醣的合成 17
三、母乳寡醣的生理功能 25
1. 岩藻糖基化母乳寡醣 26
2. 唾液酸化母乳寡醣 28
3. 無岩藻糖基化中性母乳寡醣 29
4. 母乳寡醣對母親的生理影響 30
四、母乳中母乳寡醣的組成輪廓與主要影響因子 31
1. 母乳寡醣於母乳中的分布 31
2. 影響母乳中母乳寡醣含量的主要因子 31
五、母乳寡醣結構解析 34
第三節、母乳中的三酸甘油酯 40
一、母乳中三酸甘油酯的結構組成 41
1. 母乳中的脂肪酸 41
2. 母乳三酸甘油酯中脂肪酸獨特的位置分布 44
二、母乳中三酸甘油酯的生理功能 45
1. sn-2 palmitate於新生兒脂質吸收的重要性 45
2. 母乳中的微生物群和脂肪酸 47
三、母乳中三酸甘油酯的組成輪廓 48
四、影響母乳中脂肪酸分布之因子 49
1. 母體基因於母乳中脂肪酸分布之影響 49
2. 母親飲食於母乳中脂肪酸分布之影響 50
五、透過飲食來源攝取之脂肪酸 51
1. 母乳中的奇數鏈脂肪酸 (odd chain fatty acids, OCFA) 51
2. 母乳中的EPA和DHA 52
第四節、當前研究限制 55
第三章、研究目的與實驗架構 56
第四章、材料與方法 57
第一節、實驗材料 57
一、母乳樣品 57
二、油脂樣品 59
第二節、藥品與試劑 59
一、標準品 59
二、化學藥品 60
第三節、儀器設備 61
一、裝置及標準品 61
三、器具 62
四、軟體 63
第四節、實驗方法 64
一、母乳寡醣樣品前處理 64
1. 母乳樣品前處理 64
2. 去脂肪與去蛋白質 64
3. 還原反應 64
二、母乳寡醣試劑空白樣品前處理 64
三、母乳寡醣檢量線製作 65
1. 配置流程 65
2. 處理流程 66
四、母乳寡醣查核樣品之製備 66
五、母乳寡醣樣品標準添加法 66
1. 處理流程 67
六、以液相層析串聯質譜法分析母乳寡醣 67
1. 液相層析儀分析條件 67
2. 液相層析系統與質譜系統之間的六向閥切換 67
3. 質譜儀條件設定 67
七、母乳寡醣絕對定量與相對定量分析 69
八、母乳三酸甘油酯樣品前處理 69
九、母乳三酸甘油酯樣品空白前處理 70
十、母乳三酸甘油酯基質匹配檢量線之製作 70
十一、母乳三酸甘油酯與系統查核樣品之製備 71
1. 母乳三酸甘油酯查核樣品 (quality control samples for human milk triglycerides, HMTGQC) 71
2. 系統查核樣品 (quality control samples for TG method, TG Method QC) 71
十二、母乳三酸甘油酯標準添加法之製備 72
十三、以液相層析串聯質譜法分析母乳三酸甘油酯 72
1. 管柱後添加系統 (post column addition) 72
2. 液相層析儀分析條件 72
3. 質譜儀條件設定 73
十四、母乳三酸甘油酯之絕對定量與相對定量分析 74
十五、統計試驗 74
1. 母乳寡醣組別差異 74
2. 分泌者與非分泌者個別母乳寡醣之組別差異 74
3. 母嬰特徵、母親孕期及哺乳期營養補充品之攝取與母乳寡醣分布之相關性分析 74
第五章、結果與討論 76
第一節、泌乳期前52週母乳中母乳寡醣之含量 76
一、母乳中主要的寡醣成分 76
二、不同母親母乳之母乳寡醣濃度變異性 78
三、母乳寡醣於不同泌乳週期之變化 80
四、個別母乳寡醣在不同週期之變化 83
五、帶有血型抗原特徵之母乳寡醣於泌乳期間含量變化 87
六、以母乳寡醣組成對母親之基因表型進行分類 91
1. 參考Austin等人 (2019) 之分組方法 (Austin et al., 2019) 92
2. 參考Wang 等人 (2020) 之分組方法 (Wang et al., 2020b) 92
3. 臺灣母親與其他地區人群母乳中母乳寡醣輪廓組成之比較 93
4. 臺灣母親不同母乳組別中母乳寡醣的分布 100
第二節、母親食用營養補充品及基本資料與母乳寡醣分布 107
一、母嬰特徵與母乳寡醣分布 107
1. 母親血型與母乳寡醣相關性 107
2. 嬰兒胎次與母乳寡醣相關性 108
3. 妊娠週數與母乳寡醣相關性 108
4. 分娩方式與母乳寡醣相關性 109
5. 母親居住城市與母乳寡醣相關性 109
二、母親孕期食用營養補充品與母乳寡醣分布 110
1. 孕期食用營養補充品與母乳寡醣相關性 110
2. 孕期食用綜合維他命與母乳寡醣相關性 110
3. 孕期食用葉酸與母乳寡醣相關性 111
4. 孕期食用綜合維他命及葉酸與母乳寡醣相關性 111
5. 孕期食用益生菌與母乳寡醣相關性 111
三、母親哺乳期食用營養補充品與母乳寡醣分布 112
1. 哺乳期食用營養補充品與母乳寡醣相關性 112
2. 哺乳期食用綜合維他命與母乳寡醣相關性 112
3. 哺乳期食用葉酸與母乳寡醣相關性 112
4. 哺乳期食用卵磷脂與母乳寡醣相關性 113
5. 哺乳期食用綜合維他命及卵磷脂與母乳寡醣相關性 113
6. 哺乳期食用鈣與母乳寡醣相關性 113
7. 哺乳期食用益生菌與母乳寡醣相關性 113
第三節、三酸甘油酯之分析方法擴增與母乳中三酸甘油酯之分布 126
一、LXQ母乳三酸甘油酯分析平台之化合物清單擴建 126
1. 魚油樣品中三酸甘油酯之分布 126
二、母乳查核樣品中奇數鏈脂肪酸之分布 138
三、母乳中含有EPA或DHA之三酸甘油酯 145
第六章、結論 153
第七章、參考文獻 155
第八章、附錄 177
第一節、母乳寡醣結構解析 177
一、母乳寡醣以高效能液相層析中分離 177
二、母乳寡醣於高效能液相層析串聯質譜儀之檢測模式 186
1. 加成離子的選擇 186
2. 前驅離子之質量精確度 (mass accuracy) 189
3. 利用產物離子定性與定量母乳寡醣 189
三、方法確效 196
1. 母乳寡醣之檢量線 196
2. 母乳寡醣之方法定量極限 196
3. 母乳寡醣之回收率 196
第二節、母乳三酸甘油酯結構解析 204
一、母乳三酸甘油酯以高效能液相層析中分離 204
二、母乳中三酸甘油酯於高效能液相層析串聯質譜儀之檢測模式 210
1. 以特徵碎片離子辨別母乳中三酸甘油酯組成 210
2. 判別三酸甘油酯 (AAB型及ABA型) 之情形 211
3. 三酸甘油酯命名規則與化合物清單排序 216
三、方法確效 219
1. 母乳三酸甘油酯前處理稀釋倍數對於基質效應之影響 219
2. 內標基質效應評估 220
3. 母乳三酸甘油酯之基質匹配檢量線 222
4. 母乳三酸甘油酯之方法定量極限及回收率 223
5. 母乳三酸甘油酯之回收率 223
第三節、個別母乳寡醣在不同週期之變化圖 226
第四節、不同地區研究中母親母乳寡醣組成之數據 228
第五節、母乳捐贈者之背景資料與飲食習慣調查 235
一、成大醫院90位捐贈者之背景資料與飲食習慣 235
二、臺大醫院28位捐贈者之背景資料與飲食習慣 237
第六節、母乳寡醣分析數據品管 247
第七節、同意人體研究證明書 257
-
dc.language.isozh_TW-
dc.subject泌乳期zh_TW
dc.subject分泌狀態zh_TW
dc.subject母乳三酸甘油酯zh_TW
dc.subject母乳寡醣zh_TW
dc.subject母乳zh_TW
dc.subjectSecretor statusen
dc.subjecthuman milken
dc.subjecthuman milk oligosaccharidesen
dc.subjecthuman milk triacylglycerolsen
dc.subjectlactation perioden
dc.title臺灣母親母乳中寡醣和三酸甘油酯的輪廓分析zh_TW
dc.titleProfiling analysis of oligosaccharides and triacylglycerols in human milk from Taiwanese mothersen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張永和;王惠珠;謝淑貞;陳宏彰zh_TW
dc.contributor.oralexamcommitteeYung-Ho Chang;Huei-ju Wang;Shu-Chen Hsieh;Hong-Jhang Chenen
dc.subject.keyword母乳,母乳寡醣,母乳三酸甘油酯,泌乳期,分泌狀態,zh_TW
dc.subject.keywordhuman milk,human milk oligosaccharides,human milk triacylglycerols,lactation period,Secretor status,en
dc.relation.page268-
dc.identifier.doi10.6342/NTU202404307-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
dc.date.embargo-lift2025-02-28-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
14.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved