Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學教育暨生醫倫理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95129
標題: 建立人工智能調整優化模型以利呼吸器脫離及教學
Development of an AI-assisted system for improving and teaching the weaning program of ventilator
作者: 王瑋湞
Wei-Jhen Wang
指導教授: 吳造中
Chau-Chung Wu
關鍵字: 機器學習,呼吸器脫離,拔管,加護病房,臨床教學,
Machine learning,Ventilator weaning,Extubation,Intensive Care Unit,Clinical education,
出版年 : 2024
學位: 碩士
摘要: 呼吸器是重症加護病房中維持生命的重要醫療設備,成功脫離呼吸器成為加護病房重要的課題與目標之一。過去研究顯示,臨床往往會延遲拔管,因而增加呼吸器使用的併發症,或死亡率。長期使用或判斷錯誤導致重插管的併發症,也將延長加護病房住院時間與增加醫療花費。因此,如何訓練脫離與判斷拔管時機一直是重要的研究議題。然而,至今臨床並沒有一套完整且一致的呼吸器脫離標準,台灣的病人族群也可能與國外不同。因此,本研究想藉由人工智能建立一個呼吸器脫離預測模型,預測脫離時機,也藉此評估各個指標之重要性,驗證臨床操作經驗,並提供臨床操作實務參考,以期能優化參數調整,預測脫離率,輔助臨床脫離時機判斷,並運用於重症臨床呼吸器操作教學。本研究於2022年11月開始,收案對象為插管進入台大醫院成人內科加護病房之病患。收集每天常規記錄的呼吸治療參數與各項生命徵象,常規檢驗室報告。選用30個特徵資料,並將資料分為拔管前24小時、拔管前48小時及拔管前72小時,共三組,透過極限梯度提升分類器做模型訓練,並使用準確率、精確率、敏感度、特異性、F1分數、ROC-AUC等指標進行模型預測性能評估。在本研究中發現,傳統的脫離指標RSBI在拔管成功與失敗組中並沒有達到統計上的顯著差異。而成功組的呼吸器使用天數,顯著少於失敗組。在模型預測上可以發現使用拔管前72小時的平均資料做為模型訓練,有最佳的預測表現,預測脫離的準確率為68%,AUC可達0.75。
The Mechanical ventilator is a life-saving and important support system in intensive care units (ICU). The issue of successfully weaning mechanical ventilation remains a challenge in ICU. Delays in extubation can increase complications, mortality, ICU stays, and healthcare costs. Therefore, determining optimal timing for weaning and extubation remains a crucial research topic. However, there is no standard protocol exists in clinical practice, and patient demographics in Taiwan may differ from those abroad. This study aims to develop a ventilator weaning prediction model using artificial intelligence, assessing the importance of various indicators, validating clinical experience, and providing practical guidance for clinical operations. The goal is to optimize parameter adjustments, predict weaning success rates, assist in clinical decision-making on extubation timing, and aid in ICU clinical education. Starting in November 2022 at National Taiwan University Hospital, the study involved adult ICU patients, collecting respiratory therapy parameters, vital signs, and lab data. 30 features were selected and grouped into 3 sets: 24, 48, and 72 hours before extubation. A XGboost was trained on these data, evaluating model performance using metrics such as accuracy, precision, sensitivity, specificity, F1 score, and ROC-AUC. Results: RSBI did not show statistically significant differences between successful and failure extubation groups. The duration of ventilator use was significantly shorter in successful cases compared to failure group. The model achieved optimal predictive performance when trained on average data from the 72 hours before extubation, with an accuracy of 68% and an AUC of 0.75.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95129
DOI: 10.6342/NTU202403598
全文授權: 未授權
顯示於系所單位:醫學教育暨生醫倫理學科所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
3.27 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved