Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學教育暨生醫倫理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95129
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳造中zh_TW
dc.contributor.advisorChau-Chung Wuen
dc.contributor.author王瑋湞zh_TW
dc.contributor.authorWei-Jhen Wangen
dc.date.accessioned2024-08-29T16:12:59Z-
dc.date.available2024-08-30-
dc.date.copyright2024-08-29-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citation[1] 衛生福利部中央健康保險署, “107-111年長期使用呼吸器醫療服務品質指標資訊公開,” 29 5 113. [線上]. Available: https://www.nhi.gov.tw/ch/cp-13153-45da7-3502-1.html.
[2] J.-M. Boles, J. Bion, A. Connors, M. Herridge, B. Marsh, C. Melot, R. Pearl, H. Silverman, M. Stanchina, A. Vieillard-Baron and T. Welte, "Weaning from mechanical ventilation," European Respiratory Journal, vol. 29, no. 5, pp. 1033-1056, 2007.
[3] B. Blackwood, K. E. A. Burns, C. R. Cardwell 且 P. O'Halloran, “Protocolized versus non-protocolized weaning for reducing the duration of mechanical ventilation in critically ill adult patients,” Cochrane Database of Systematic Reviews, 6 11 2014.
[4] C. I. Ossai and N. Wickramasinghe, "Intelligent decision support with machine learning for efficient management of mechanical ventilation in the intensive care unit - A critical overview," International Journal of Medical Informatics, vol. 150, 6 2021.
[5] "pelegrinamedical," [Online]. Available: https://www.pelegrinamedical.com/koko-700-021-haloscale-respirometer.
[6] "GaleMed," [Online]. Available: https://www.galemed.com/zh-tw/product/gio-digital-pressure-gauge.
[7] A. R. Baptistella , F. J. Sarmento , K. R. d. Silva, S. F. Baptistella, M. Taglietti , R. Á. Zuquello and J. R. N. Filho, "Predictive factors of weaning from mechanical ventilation and extubation outcome: A systematic review," Journal of Critical Care, vol. 48, pp. 56-62, 12 2018.
[8] V. Trivedi, D. Chaudhuri, R. Jinah, J. Piticaru, A. Agarwal , K. Liu, E. McArthur, M. C. Sklar , J. O. Friedrich, B. Rochwerg and K. E. A. Burns, "The Usefulness of the Rapid Shallow Breathing Index in Predicting Successful Extubation: A Systematic Review and Meta-analysis," Chest, vol. 161, no. 1, pp. 97-111, 1 2022.
[9] "YourFreeTemplates," [Online]. Available: https://yourfreetemplates.com/free-machine-learning-diagram/.
[10] V. B. Kolachalama and P. S. Garg , "Machine learning and medical education," npj Digital Medicine, 27 9 2018.
[11] I. Dayan, H. R. Roth, A. Zhong and A. Harouni , "Federated learning for predicting clinical outcomes in patients with COVID-19," Nature Medicine, vol. 27, pp. 1735-1743, 10 2021.
[12] M. T. Kwong, G. W. Colopy, A. M. Weber, A. Ercole, and J. H. M. Bergmann, "The efficacy and effectiveness of machine learning for weaning in mechanically ventilated patients at the intensive care unit: a systematic review," Bio-Design and Manufacturing, vol. 2, no. 1, pp. 31-40, 19 3 2019.
[13] T. Chen, J. Xu, H. Ying, X. Chen, R. Feng, X. Fang, H. Gao and J. Wu, "Prediction of Extubation Failure for Intensive Care Unit Patients Using Light Gradient Boosting Machine," IEEE Access, vol. 7, pp. 150960-150968, 11 10 2019.
[14] A. Fabregat, M. Magret , J. A. Ferré , A. Vernet, N. Guasch, A. Rodríguez , J. Gómez and M. Bodí, "A Machine Learning decision-making tool for extubation in Intensive Care Unit patients," Computer Methods and Programs in Biomedicine, 3 2021.
[15] 宋美儀, 柯獻欽, 鄭高珍, 何宗翰 and 唐虎, "Apply Artificial Intelligence for Ventilator Weaning of Critically Ill patients," 呼吸治療, vol. 19, pp. 45-46, 10 2020.
[16] K.-M. Liao, S.-C. Ko, C.-F. Liu, K.-C. Cheng, C.-M. Chen, M.-I. Sung, S.-C. Hsing and C.-J. Chen, "Development of an Interactive AI System for the Optimal Timing Prediction of Successful Weaning from Mechanical Ventilation for Patients in Respiratory Care Centers," Diagnostics, vol. 12, no. 4, 13 4 2022.
[17] L. M. Fleuren, T. A. Dam , M. Tonutti, D. P. d. Bruin, R. C. A. Lalisang, D. Gommers, O. L. Cremer, R. J. Bosman, S. Rigter, E.-J. Wils , T. Frenzel , D. A. Dongelmans, R. d. Jong , M. Peters, M. J. A. Kamps, D. Ramnarain, R. Nowitzky, F. G. C. A. Nooteboom, W. d. Ruijter, L. C. Urlings-Strop , E. G. M. Smit , D. J. Mehagnoul-Schipper, T. Dormans, C. P. C. d. Jager , S. H. A. Hendriks, S. Achterberg, E. Oostdijk, A. C. Reidinga, B. Festen-Spanjer, G. B. Brunnekreef , A. D. Cornet, W. v. d. Tempel , A. D. Boelens, P. Koetsier, J. Lens , H. J. Faber , A. Karakus, R. Entjes, P. d. Jong, T. C. D. Rettig, S. Arbous, S. J. J. Vonk, M. Fornasa , T. Machado, T. v. Houwert , H. Hovenkamp , R. N. Londono, D. Quintarelli, M. G. Scholtemeijer, A. A. d. Beer , G. Cinà , A. Kantorik , T. d. Ruijter, W. E. Herter, M. Beudel , A. R. J. Girbes, M. Hoogendoorn, P. J. Thoral, P. W. G. Elbers and D. I. D. S. A. C.-1. C. , "Predictors for extubation failure in COVID-19 patients using a machine learning approach," Critical Care, vol. 25, no. 1, 7 12 2021.
[18] Y.-J. Chang, K.-C. Hung, L.-K. Wang, C.-H. Yu, C.-K. Chen, H.-T. Tay, J.-J. Wang and C.-F. Liu, "A Real-Time Artificial Intelligence-Assisted System to Predict Weaning from Ventilator Immediately after Lung Resection Surgery," International Journal of Environmental Research and Public Health, vol. 18, no. 5, 8 3 2021.
[19] W.-T. Chen, H.-L. Huang, P.-S. Ko, W. Su, C.-C. Kao and S.-L. Su, "A Simple Algorithm Using Ventilator Parameters to Predict Successfully Rapid Weaning Program in Cardiac Intensive Care Unit Patients," Journal of Personalized Medicine, vol. 12, no. 3, 21 5 2022.
[20] K.-Y. Huang, Y.-L. Hsu, H.-C. Chen, M.-H. Horng, C.-L. Chung, C.-H. Lin, J.-L. Xu and M.-H. Hou, "Developing a machine-learning model for real-time prediction of successful extubation in mechanically ventilated patients using time-series ventilator-derived parameters," Frontiers in medicine, vol. 10, 9 5 2023.
[21] K. Pai, S. Su, M. Chan, C. Wu and W. Chao, "Explainable machine learning approach to predict extubation in critically ill ventilated patients: a retrospective study in central Taiwan," BMC Anesthesiology, vol. 22, no. 1, 14 11 2022.
[22] N. G. Guzatti, F. Klein, J. A. Oliveira, G. B. Rático, M. F. Cordeiro, L. P. Marmitt, D. d. Carvalho, J. R. N. Filho and A. R. Baptistella, "Predictive Factors of Extubation Failure in COVID-19 Mechanically Ventilated Patients," Journal of Intensive Care Medicine, 28 3 2022.
[23] W. Li , Y. Zhang, Z. Wang , D. Jia , C. Zhang , X. Ma, X. Han, T. Zhao and Z. Zhang, "The risk factors of reintubation in intensive care unit patients on mechanical ventilation: A systematic review and meta-analysis," Intensive and Critical Care Nursing, vol. 74, 2 2023.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95129-
dc.description.abstract呼吸器是重症加護病房中維持生命的重要醫療設備,成功脫離呼吸器成為加護病房重要的課題與目標之一。過去研究顯示,臨床往往會延遲拔管,因而增加呼吸器使用的併發症,或死亡率。長期使用或判斷錯誤導致重插管的併發症,也將延長加護病房住院時間與增加醫療花費。因此,如何訓練脫離與判斷拔管時機一直是重要的研究議題。然而,至今臨床並沒有一套完整且一致的呼吸器脫離標準,台灣的病人族群也可能與國外不同。因此,本研究想藉由人工智能建立一個呼吸器脫離預測模型,預測脫離時機,也藉此評估各個指標之重要性,驗證臨床操作經驗,並提供臨床操作實務參考,以期能優化參數調整,預測脫離率,輔助臨床脫離時機判斷,並運用於重症臨床呼吸器操作教學。本研究於2022年11月開始,收案對象為插管進入台大醫院成人內科加護病房之病患。收集每天常規記錄的呼吸治療參數與各項生命徵象,常規檢驗室報告。選用30個特徵資料,並將資料分為拔管前24小時、拔管前48小時及拔管前72小時,共三組,透過極限梯度提升分類器做模型訓練,並使用準確率、精確率、敏感度、特異性、F1分數、ROC-AUC等指標進行模型預測性能評估。在本研究中發現,傳統的脫離指標RSBI在拔管成功與失敗組中並沒有達到統計上的顯著差異。而成功組的呼吸器使用天數,顯著少於失敗組。在模型預測上可以發現使用拔管前72小時的平均資料做為模型訓練,有最佳的預測表現,預測脫離的準確率為68%,AUC可達0.75。zh_TW
dc.description.abstractThe Mechanical ventilator is a life-saving and important support system in intensive care units (ICU). The issue of successfully weaning mechanical ventilation remains a challenge in ICU. Delays in extubation can increase complications, mortality, ICU stays, and healthcare costs. Therefore, determining optimal timing for weaning and extubation remains a crucial research topic. However, there is no standard protocol exists in clinical practice, and patient demographics in Taiwan may differ from those abroad. This study aims to develop a ventilator weaning prediction model using artificial intelligence, assessing the importance of various indicators, validating clinical experience, and providing practical guidance for clinical operations. The goal is to optimize parameter adjustments, predict weaning success rates, assist in clinical decision-making on extubation timing, and aid in ICU clinical education. Starting in November 2022 at National Taiwan University Hospital, the study involved adult ICU patients, collecting respiratory therapy parameters, vital signs, and lab data. 30 features were selected and grouped into 3 sets: 24, 48, and 72 hours before extubation. A XGboost was trained on these data, evaluating model performance using metrics such as accuracy, precision, sensitivity, specificity, F1 score, and ROC-AUC. Results: RSBI did not show statistically significant differences between successful and failure extubation groups. The duration of ventilator use was significantly shorter in successful cases compared to failure group. The model achieved optimal predictive performance when trained on average data from the 72 hours before extubation, with an accuracy of 68% and an AUC of 0.75.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-29T16:12:59Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-29T16:12:59Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
謝誌 ii
摘要 iii
Abstract iv
目次 v
圖次 vii
表次 viii
壹、緒論 1
一、研究背景 1
二、研究目的 2
貳、文獻探討 3
一、呼吸器脫離 3
(一)脫離步驟 3
(二)脫離指標 3
二、機器學習於呼吸器應用 5
三、機器學習預測呼吸器脫離 9
參、研究設計與研究方法 11
一、研究對象 11
二、研究流程 11
三、研究工具與資料處理 12
(一)統計分析 12
(二)機器學習模型 12
(三)特徵選取 15
(四)模型訓練 16
(五)模型重要性特徵 16
四、研究倫理 17
肆、研究結果 18
一、收案基本資料 18
二、模型訓練結果 20
三、模型重要性特徵結果 25
伍、研究討論與建議 29
一、研究討論 29
(一)收案資料 29
(二)模型訓練與重要特徵 30
二、研究限制 32
三、研究建議 32
陸、結論 33
柒、參考文獻 34
附錄一 個案報告表 37
附錄二 研究倫理委員會公文及持續案許可書 43
附錄三 研究受訪者說明及同意書 47
-
dc.language.isozh_TW-
dc.subject呼吸器脫離zh_TW
dc.subject機器學習zh_TW
dc.subject臨床教學zh_TW
dc.subject加護病房zh_TW
dc.subject拔管zh_TW
dc.subjectExtubationen
dc.subjectIntensive Care Uniten
dc.subjectClinical educationen
dc.subjectVentilator weaningen
dc.subjectMachine learningen
dc.title建立人工智能調整優化模型以利呼吸器脫離及教學zh_TW
dc.titleDevelopment of an AI-assisted system for improving and teaching the weaning program of ventilatoren
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳慧玲 ;楊志偉zh_TW
dc.contributor.oralexamcommitteeHuey-Ling Chen;Chih-Wei Yangen
dc.subject.keyword機器學習,呼吸器脫離,拔管,加護病房,臨床教學,zh_TW
dc.subject.keywordMachine learning,Ventilator weaning,Extubation,Intensive Care Unit,Clinical education,en
dc.relation.page51-
dc.identifier.doi10.6342/NTU202403598-
dc.rights.note未授權-
dc.date.accepted2024-08-07-
dc.contributor.author-college醫學院-
dc.contributor.author-dept醫學教育暨生醫倫理研究所-
顯示於系所單位:醫學教育暨生醫倫理學科所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
3.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved