Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 社會科學院
  3. 經濟學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94420
Title: 個人化推薦系統之模型解釋與聚類分析: 以葡萄酒推薦為例
Model Interpretation and Clustering Analysis in Personalized Recommendation Systems: A Case Study on Wine Recommendations
Authors: 江彥亨
Yan-Heng Jiang
Advisor: 陳由常
Yu-Chang Chen
Co-Advisor: 林明仁
Ming-Jen Lin
Keyword: 推薦系統,貝氏個人化排序,偏最小平方迴歸,階層式分群,可解釋性,
Recommendaiton System,Bayesian Personalized Ranking,Partial Least Squares Regression,Hierarchical Clustering,Interpretability,
Publication Year : 2024
Degree: 碩士
Abstract: 在數位化迅速發展的現今,購買葡萄酒已不再僅限於實體通路,消費者也可以透過網路平台購買各類酒款。然而,葡萄酒作為具高度個人偏好和需要專業知識的商品,加上網路資訊的爆炸性增長,使消費者在網路上尋找合適的葡萄酒產品變得困難。因此,為了提升消費者體驗和增加銷售,建立個人化推薦系統變得尤為重要。

本研究使用一葡萄酒電商平台的銷售數據,採用推薦系統中著名的矩陣分解模型 (Matrix Factorization),並結合貝氏個人化排序演算法 (Bayesian Personalized Ranking) 為電商平台建立葡萄酒推薦系統。然而,該模型雖能達到良好的預測效能,但模型產生的推薦結果卻難以被解釋,使得公司或用戶可能無法信任模型的推薦。

為解決這項問題,本研究引入偏最小平方迴歸 (Partial Least Squares Regression),從葡萄酒標籤屬性的角度來分析模型的推薦邏輯。此外,使用階層式分群法 (Hierarchical Clustering) 對模型產生之酒款潛在因子進行分群,並針對分群結果探討哪些葡萄酒屬性為形成集群的關鍵。透過以上分析來為推薦結果提供合理解
釋,不僅能增加電商平台對推薦的信任度,也能深入了解平台用戶的消費行為,為推薦策略提供重要參考及依據。
In the rapidly evolving digital era, buying wine is no longer limited to physical stores.
Consumers can also purchase a variety of wines through online platforms. However, wine,
being a product characterized by highly individual preferences and requiring specialized
knowledge, coupled with the explosive growth of online information, has made it challenging for consumers to find suitable wine products online. Therefore, establishing a personalized recommendation system is particularly crucial to enhance consumer experience and increase sales.
This study utilizes sales data from a wine e-commerce platform and adopts the well-known Matrix Factorization model along with Bayesian Personalized Ranking algorithm to establish a wine recommendation system for the platform. However, despite the model’s ability to achieve good predictive performance, the recommendations it generates are often difficult to interpret, leading to potential mistrust from companies or users.
To address this issue, this study introduces Partial Least Squares Regression (PLSR) to analyze the recommendation logic of the model from the perspective of wine label attributes. Additionally, Hierarchical Clustering is utilized to group the latent factors of the wines generated by the model, with a focus on identifying key wine attributes that contribute to cluster formation. Through these analyses, not only are reasonable explanations provided for the recommendation results, but also trust in the recommendations from the e-commerce platform is enhanced, alongside gaining deeper insights into the consumption behavior of platform users, thus providing valuable references and bases for recommendation strategies.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94420
DOI: 10.6342/NTU202403068
Fulltext Rights: 同意授權(限校園內公開)
Appears in Collections:經濟學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
Access limited in NTU ip range
4.18 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved