請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94420
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳由常 | zh_TW |
dc.contributor.advisor | Yu-Chang Chen | en |
dc.contributor.author | 江彥亨 | zh_TW |
dc.contributor.author | Yan-Heng Jiang | en |
dc.date.accessioned | 2024-08-15T17:23:44Z | - |
dc.date.available | 2024-08-16 | - |
dc.date.copyright | 2024-08-15 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-09 | - |
dc.identifier.citation | Abdollahi, B. and Nasraoui, O. (2016). Explainable matrix factorization for collaborative filtering. In Proceedings of the 25th International Conference Companion on WorldWide Web, pages 5–6.
Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6):734–749. Aggarwal, C. C. et al. (2016). Recommender systems, volume 1. Springer. Anandhan, A., Shuib, L., Ismail, M. A., and Mujtaba, G. (2018). Social media recommender systems: Review and open research issues. IEEE Access, 6:15608–15628. Billsus, D., Pazzani, M. J., et al. (1998). Learning collaborative information filters. In Icml, volume 98, pages 46–54. Chen, B., Rhodes, C., Crawford, A., and Hambuchen, L. (2014). Wineinformatics: Applying data mining on wine sensory reviews processed by the computational wine wheel. In 2014 IEEE International Conference on Data Mining Workshop, pages 142–149. Corduas, M., Cinquanta, L., and Ievoli, C. (2013). The importance of wine attributes for purchase decisions: A study of italian consumers'perception. Food Quality and Preference, 28(2):407–418. Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., Gupta, S., He, Y., Lambert, M., Livingston, B., et al. (2010). The youtube video recommendation system. In Proceedings of the fourth ACM conference on Recommender systems, pages 293–296. Deshpande, M. and Karypis, G. (2004). Item-based top-n recommendation algorithms. ACM Transactions on Information Systems (TOIS), 22(1):143–177. Funk, S. (2006). Netflix update: Try this at home. Retrieved from http://sifter.org/ ~simon/journal/20061211.html. Gomez-Uribe, C. A. and Hunt, N. (2016). The netflix recommender system: Algorithms, business value, and innovation. ACM Trans. Manage. Inf. Syst., 6(4). Gunawardana, A., Shani, G., and Yogev, S. (2012). Evaluating recommender systems. In Recommender systems handbook, pages 547–601. Springer. Herlocker, J. L., Konstan, J. A., and Riedl, J. (2000). Explaining collaborative filtering recommendations. In Proceedings of the 2000 ACM conference on Computer supported cooperative work, pages 241–250. Höskuldsson, A. (1988). Pls regression methods. Journal of chemometrics, 2(3):211–228. Hu, Y., Koren, Y., and Volinsky, C. (2008). Collaborative filtering for implicit feedback datasets. pages 263–272. Hu, Y., Xiong, F., Pan, S., Xiong, X., Wang, L., and Chen, H. (2021). Bayesian personalized ranking based on multiple-layer neighborhoods. Information Sciences, 542:156–176. Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8):30–37. Lee, T. Q., Park, Y., and Park, Y.-T. (2007). A similarity measure for collaborative filtering with implicit feedback. In Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence: Third International Conference on Intelligent Computing, ICIC 2007, Qingdao, China, August 21-24, 2007. Proceedings 3, pages 385–397. Springer. Linden, G., Smith, B., and York, J. (2003). Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Computing, 7(1):76–80. Lockshin, L. and Corsi, A. M. (2012). Consumer behaviour for wine 2.0: A review since 2003 and future directions. Wine Economics and Policy, 1(1):2–23. McNee, S. M., Riedl, J., and Konstan, J. A. (2006). Being accurate is not enough: how accuracy metrics have hurt recommender systems. In CHI’06 extended abstracts on Human factors in computing systems, pages 1097–1101. Moeskops, B. (2022). Using Explainable Recommendations in the Wine Industry. PhD thesis, tilburg university. Nóbrega, C. and Marinho, L. (2019). Towards explaining recommendations through local surrogate models. In Proceedings of the 34th ACM/SIGAPP symposium on applied computing, pages 1671–1678. Oczkowski, E. and Doucouliagos, H. (2015). Wine prices and quality ratings: a metaregression analysis. American Journal of Agricultural Economics, 97(1):103–121. Peake, G. and Wang, J. (2018). Explanation mining: Post hoc interpretability of latent factor models for recommendation systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 2060–2069. Redelinghuys, J. and Er, Ş. (2023). somlier: a south african wine recommender system. Journal of Wine Research, 34(1):54–80. Rendle, S. (2021). Item recommendation from implicit feedback. In Recommender Systems Handbook, pages 143–171. Springer. Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-Thieme, L. (2012). BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618. Ribeiro, M. T., Singh, S., and Guestrin, C. (2016a). ” why should i trust you?” explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pages 1135–1144. Ribeiro, M. T., Singh, S., and Guestrin, C. (2016b). Model-agnostic interpretability of machine learning. arXiv preprint arXiv:1606.05386. Ricci, F., Rokach, L., and Shapira, B. (2011). Introduction to Recommender Systems Handbook, pages 1–35. Springer US, Boston, MA. Robertson, J., Ferreira, C., and Botha, E. (2018). The influence of product knowledge on the relative importance of extrinsic product attributes of wine. Journal of Wine Research, 29(3):159–176. Sanchez, I., Rocktaschel, T., Riedel, S., and Singh, S. (2015). Towards extracting faithful and descriptive representations of latent variable models. AAAI Spring Syposium on Knowledge Representation and Reasoning (KRR): Integrating Symbolic and Neural Approaches, 1:4–1. Schafer, J. B., Frankowski, D., Herlocker, J., and Sen, S. (2007). Collaborative filtering recommender systems. In The adaptive web: methods and strategies of web personalization, pages 291–324. Springer. Schafer, J. B., Konstan, J. A., and Riedl, J. (2001). E-commerce recommendation applications. Data mining and knowledge discovery, 5:115–153. Schamel, G. (2009). Dynamic analysis of brand and regional reputation: The case of wine. Journal of Wine Economics, 4(1):62–80. Sharma, S., Batra, N., et al. (2019). Comparative study of single linkage, complete linkage, and ward method of agglomerative clustering. In 2019 international conference on machine learning, big data, cloud and parallel computing (COMITCon), pages 568–573. IEEE. Shi, Y., Larson, M., and Hanjalic, A. (2014). Collaborative filtering beyond the user-item matrix: A survey of the state of the art and future challenges. ACM Comput. Surv., 47(1). Shmaryahu, D., Shani, G., and Shapira, B. (2020). Post-hoc explanations for complex model recommendations using simple methods. In IntRS@ RecSys, pages 26–36. Sinha, R. and Swearingen, K. (2002). The role of transparency in recommender systems. In CHI’02 extended abstracts on Human factors in computing systems, pages 830–831. Sokal, R. R. and Rohlf, F. J. (1962). The comparison of dendrograms by objective methods. Taxon, pages 33–40. Su, X. and Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Advances in artificial intelligence, 2009(1):421425. Thomas, A. and Pickering, G. (2003). The importance of wine label information. International journal of wine marketing, 15(2):58–74. Tintarev, N. and Masthoff, J. (2007). A survey of explanations in recommender systems. In 2007 IEEE 23rd international conference on data engineering workshop, pages 801–810. IEEE. Veale, R. and Quester, P. (2008). Consumer sensory evaluations of wine quality: The respective influence of price and country of origin. Journal of Wine Economics, 3(1):10–29. Wang, S., Tian, H., Zhu, X., and Wu, Z. (2018). Explainable matrix factorization with constraints on neighborhood in the latent space. In Data Mining and Big Data: Third International Conference, DMBD 2018, Shanghai, China, June 17–22, 2018, Proceedings 3, pages 102–113. Springer. Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American statistical association, 58(301):236–244. Wegelin, J. A. (2000). A survey of partial least squares (pls) methods, with emphasis on the two-block case. Wold, H. (1975). Path models with latent variables: The nipals approach. In Quantitative sociology, pages 307–357. Elsevier. Wold, S., Albano, C., Dunn, W., Edlund, U., Esbensen, K., Geladi, P., Hellberg, S., Johansson, E., Lindberg, W., and Sjöström, M. (1984). Multivariate data analysis in chemistry. Chemometrics: mathematics and statistics in chemistry, pages 17–95. Zhang, Y., Chen, X., et al. (2020). Explainable recommendation: A survey and new perspectives. Foundations and Trends® in Information Retrieval, 14(1):1–101. 李承傑和董旭英 (2017). 偏最小平方法結構方程模型. 科學發展, 第 539 期:20–25. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94420 | - |
dc.description.abstract | 在數位化迅速發展的現今,購買葡萄酒已不再僅限於實體通路,消費者也可以透過網路平台購買各類酒款。然而,葡萄酒作為具高度個人偏好和需要專業知識的商品,加上網路資訊的爆炸性增長,使消費者在網路上尋找合適的葡萄酒產品變得困難。因此,為了提升消費者體驗和增加銷售,建立個人化推薦系統變得尤為重要。
本研究使用一葡萄酒電商平台的銷售數據,採用推薦系統中著名的矩陣分解模型 (Matrix Factorization),並結合貝氏個人化排序演算法 (Bayesian Personalized Ranking) 為電商平台建立葡萄酒推薦系統。然而,該模型雖能達到良好的預測效能,但模型產生的推薦結果卻難以被解釋,使得公司或用戶可能無法信任模型的推薦。 為解決這項問題,本研究引入偏最小平方迴歸 (Partial Least Squares Regression),從葡萄酒標籤屬性的角度來分析模型的推薦邏輯。此外,使用階層式分群法 (Hierarchical Clustering) 對模型產生之酒款潛在因子進行分群,並針對分群結果探討哪些葡萄酒屬性為形成集群的關鍵。透過以上分析來為推薦結果提供合理解 釋,不僅能增加電商平台對推薦的信任度,也能深入了解平台用戶的消費行為,為推薦策略提供重要參考及依據。 | zh_TW |
dc.description.abstract | In the rapidly evolving digital era, buying wine is no longer limited to physical stores.
Consumers can also purchase a variety of wines through online platforms. However, wine, being a product characterized by highly individual preferences and requiring specialized knowledge, coupled with the explosive growth of online information, has made it challenging for consumers to find suitable wine products online. Therefore, establishing a personalized recommendation system is particularly crucial to enhance consumer experience and increase sales. This study utilizes sales data from a wine e-commerce platform and adopts the well-known Matrix Factorization model along with Bayesian Personalized Ranking algorithm to establish a wine recommendation system for the platform. However, despite the model’s ability to achieve good predictive performance, the recommendations it generates are often difficult to interpret, leading to potential mistrust from companies or users. To address this issue, this study introduces Partial Least Squares Regression (PLSR) to analyze the recommendation logic of the model from the perspective of wine label attributes. Additionally, Hierarchical Clustering is utilized to group the latent factors of the wines generated by the model, with a focus on identifying key wine attributes that contribute to cluster formation. Through these analyses, not only are reasonable explanations provided for the recommendation results, but also trust in the recommendations from the e-commerce platform is enhanced, alongside gaining deeper insights into the consumption behavior of platform users, thus providing valuable references and bases for recommendation strategies. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:23:44Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-15T17:23:44Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
摘要 ii Abstract iii 目次 v 圖次 vii 表次 ix 第一章 緒論 1 1.1 研究背景與動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 第二章 文獻探討 4 2.1 協同過濾 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 顯性與隱性回饋 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 可解釋性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 葡萄酒消費決策因素 . . . . . . . . . . . . . . . . . . . . . . . . . . 9 第三章 研究方法 11 3.1 資料來源與預處理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 推薦模型建構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.1 矩陣分解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.2 排名形式化定義 . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.3 最佳化準則 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.4 最佳化演算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 推薦解釋分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.1 解釋性分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.1.1 模型設定 . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3.1.2 解釋方式 . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.2 因子聚類分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.2.1 連結方法 . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.2.2 集群原因分析 . . . . . . . . . . . . . . . . . . . . . . 22 第四章 實證結果與分析 24 4.1 推薦效能評估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.1 評估指標 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.2 效能比較 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 PLSR 分析結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2.1 價位關聯性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.2 國家關聯性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3 層次聚類分析結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3.1 樹狀圖 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3.2 迴歸分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 第五章 總結 36 參考文獻 37 | - |
dc.language.iso | zh_TW | - |
dc.title | 個人化推薦系統之模型解釋與聚類分析: 以葡萄酒推薦為例 | zh_TW |
dc.title | Model Interpretation and Clustering Analysis in Personalized Recommendation Systems: A Case Study on Wine Recommendations | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 林明仁 | zh_TW |
dc.contributor.coadvisor | Ming-Jen Lin | en |
dc.contributor.oralexamcommittee | 賴建宇;莊雅婷 | zh_TW |
dc.contributor.oralexamcommittee | Chien-Yu Lai;Ya-Ting Chuang | en |
dc.subject.keyword | 推薦系統,貝氏個人化排序,偏最小平方迴歸,階層式分群,可解釋性, | zh_TW |
dc.subject.keyword | Recommendaiton System,Bayesian Personalized Ranking,Partial Least Squares Regression,Hierarchical Clustering,Interpretability, | en |
dc.relation.page | 43 | - |
dc.identifier.doi | 10.6342/NTU202403068 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-12 | - |
dc.contributor.author-college | 社會科學院 | - |
dc.contributor.author-dept | 經濟學系 | - |
顯示於系所單位: | 經濟學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.18 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。