Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94139
Title: 利用非對稱相異性度量求解充電車系統規劃與其他應用之最佳化問題
Utilizing Asymmetric Dissimilarity Measures for Optimizing Electric Vehicle Charging Operations and Other Applications
Authors: 易子安
Zih-An Yi
Advisor: 洪英超
Ying-Chao Hung
Keyword: 電動車充電站區位途程問題,平均旅行距離,平均旅行時間,最短行車距離,非對稱分群,
EV charging station location-routing problem,Mean travel distance,Mean travel time,Shortest driving distance,Asymmetric clustering,
Publication Year : 2024
Degree: 碩士
Abstract: 在本研究中,我們考慮一個具有隨機需求位置和任意到達時間的電動車(EV)充電系統。目標為決定最佳的充電站設置位置及對應的電動車充電站途程策略(EV charging station routing policy),從而最小化充電需求的平均旅行時間或平均旅行距離(mean travel time/distance)。透過考慮基於位置的電動車充電站途程策略(location-based EV charging station routing policy)並整併 Google 地圖(Google Maps)所提供的實際交通資訊,我們得以將此問題化為一非對稱分群問題,旨在最小化資料點到所對應之群中心的差異性(dissimilarity)總和。此模型所提供之資料驅動(data-driven)方式,不但可以納入各種營運考量,更能適用於其他具有相似性質的現實應用問題。針對此問題,本研究提出了兩個創新的非對稱分群演算法,並以幾種現實情境為例展示。然而,在人造不對稱資料的穩健性衡量(robustness testing)中,儘管其中一者表現良好,另一者卻表現出其局限性。
In this research, we consider a stochastic electric vehicle (EV) charging system with random demand locations and arrival times. The objective is to determine the optimal locations for charging stations and the corresponding EV charging station routing policy to minimize the mean travel time or distance for charging demands. By considering a location-based EV charging station routing policy and utilizing real traffic information from Google Maps, we formulate this as an asymmetric clustering problem aimed at minimizing the sum of dissimilarities from data points to their respective cluster centers. This model provides a data-driven approach that not only enables the incorporation of various operational concerns but also can be applied to other similar real-world applications. Two novel asymmetric clustering algorithms are developed to address the problem, illustrated using several real-world scenarios. However, the robustness testing on synthetic asymmetric data reveals that while one algorithm demonstrates strong performance, the other exhibits limitations.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94139
DOI: 10.6342/NTU202402910
Fulltext Rights: 同意授權(限校園內公開)
metadata.dc.date.embargo-lift: 2029-07-31
Appears in Collections:工業工程學研究所

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
12.19 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved