請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94139
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 洪英超 | zh_TW |
dc.contributor.advisor | Ying-Chao Hung | en |
dc.contributor.author | 易子安 | zh_TW |
dc.contributor.author | Zih-An Yi | en |
dc.date.accessioned | 2024-08-14T16:54:37Z | - |
dc.date.available | 2024-08-15 | - |
dc.date.copyright | 2024-08-14 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-02 | - |
dc.identifier.citation | Nadine Rauh, Thomas Franke, and Josef F Krems. Understanding the impact of electric vehicle driving experience on range anxiety. Human factors, 57(1):177–187, 2015.
Sirapa Shrestha, Bivek Baral, Malesh Shah, Sailesh Chitrakar, and Bim P Shrestha. Measures to resolve range anxiety in electric vehicle users. International Journal of Low-Carbon Technologies, 17:1186–1206, 2022. Muhammad Shahid Mastoi, Shenxian Zhuang, Hafiz Mudassir Munir, Malik Haris, Mannan Hassan, Muhammad Usman, Syed Sabir Hussain Bukhari, and Jong-Suk Ro. An in-depth analysis of electric vehicle charging station infrastructure, policy implications, and future trends. Energy Reports, 8:11504–11529, 2022. Min Xu, Hai Yang, and Shuaian Wang. Mitigate the range anxiety: Siting battery charging stations for electric vehicle drivers. Transportation Research Part C: Emerging Technologies, 114:164–188, 2020. Jiapei Li, Chi Xie, and Zhaoyao Bao. Optimal en-route charging station locations for electric vehicles: A new modeling perspective and a comparative evaluation of network-based and metanetwork-based approaches. Transportation Research Part C: Emerging Technologies, 142:103781, 2022. Michael Kuby and Seow Lim. The flow-refueling location problem for alternative-fuel vehicles. Socio-Economic Planning Sciences, 39(2):125–145, 2005. Athanasia Karakitsiou, Athanasios Migdalas, and PM Pardalos. Optimal location problems for electric vehicles charging stations: models and challenges. Open Problems in Optimization and Data Analysis, pages 49–60, 2018. Shuai Zhang, Mingzhou Chen, and Wenyu Zhang. A novel location-routing problem in electric vehicle transportation with stochastic demands. Journal of Cleaner Production, 221:567–581, 2019. Amin Aghalari, Darweesh Salamah, Mohannad Kabli, and Mohammad Marufuzzaman. A two-stage stochastic location–routing problem for electric vehicles fast charging. Computers & Operations Research, 158:106286, 2023. Ying-Chao Hung and George Michailidis. A novel data-driven approach for solving the electric vehicle charging station location-routing problem. IEEE Transactions on Intelligent Transportation Systems, 23(12):23858–23868, 2022. James MacQueen et al. Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1(14):281–297, 1967. Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–137, 1982. Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: spectral clustering and normalized cuts. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 551–556, 2004. Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an introduction to cluster analysis. John Wiley & Sons, 2009. Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm. Advances in neural information processing systems, 14, 2001. Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17:395–416, 2007. Peter Henry Andrews Sneath. The principles and practice of numerical classification. Numerical taxonomy, 573, 1973. Dominik Olszewski. Asymmetric k-means algorithm. In Adaptive and Natural Computing Algorithms: 10th International Conference, ICANNGA 2011, Ljubljana, Slovenia, April 14-16, 2011, Proceedings, Part II 10, pages 1–10. Springer, 2011. Narges Ahmadzadehgoli, Adel Mohammadpour, and Mohammad Hassan Behzadi. Linex k-means: clustering by an asymmetric dissimilarity measure. Journal of Statistical Theory and Applications, 17(1):29–38, 2018. Gunnar Carlsson, Facundo Mémoli, Alejandro Ribeiro, and Santiago Segarra. Axiomatic construction of hierarchical clustering in asymmetric networks. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 5219–5223. IEEE, 2013. Donatella Vicari. Classification of asymmetric proximity data. Journal of classification, 31(3):386–420, 2014. Marina Meilă and William Pentney. Clustering by weighted cuts in directed graphs. In Proceedings of the 2007 SIAM international conference on data mining, pages 135–144. SIAM, 2007. Fragkiskos D Malliaros and Michalis Vazirgiannis. Clustering and community detection in directed networks: A survey. Physics reports, 533(4):95–142, 2013. Mihai Cucuringu, Huan Li, He Sun, and Luca Zanetti. Hermitian matrices for clustering directed graphs: insights and applications. In International Conference on Artificial Intelligence and Statistics, pages 983–992. PMLR, 2020. Steinar Laenen and He Sun. Higher-order spectral clustering of directed graphs. Advances in neural information processing systems, 33:941–951, 2020. Gian Paolo Clemente and Rosanna Grassi. Directed clustering in weighted networks: A new perspective. Chaos, Solitons & Fractals, 107:26–38, 2018. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94139 | - |
dc.description.abstract | 在本研究中,我們考慮一個具有隨機需求位置和任意到達時間的電動車(EV)充電系統。目標為決定最佳的充電站設置位置及對應的電動車充電站途程策略(EV charging station routing policy),從而最小化充電需求的平均旅行時間或平均旅行距離(mean travel time/distance)。透過考慮基於位置的電動車充電站途程策略(location-based EV charging station routing policy)並整併 Google 地圖(Google Maps)所提供的實際交通資訊,我們得以將此問題化為一非對稱分群問題,旨在最小化資料點到所對應之群中心的差異性(dissimilarity)總和。此模型所提供之資料驅動(data-driven)方式,不但可以納入各種營運考量,更能適用於其他具有相似性質的現實應用問題。針對此問題,本研究提出了兩個創新的非對稱分群演算法,並以幾種現實情境為例展示。然而,在人造不對稱資料的穩健性衡量(robustness testing)中,儘管其中一者表現良好,另一者卻表現出其局限性。 | zh_TW |
dc.description.abstract | In this research, we consider a stochastic electric vehicle (EV) charging system with random demand locations and arrival times. The objective is to determine the optimal locations for charging stations and the corresponding EV charging station routing policy to minimize the mean travel time or distance for charging demands. By considering a location-based EV charging station routing policy and utilizing real traffic information from Google Maps, we formulate this as an asymmetric clustering problem aimed at minimizing the sum of dissimilarities from data points to their respective cluster centers. This model provides a data-driven approach that not only enables the incorporation of various operational concerns but also can be applied to other similar real-world applications. Two novel asymmetric clustering algorithms are developed to address the problem, illustrated using several real-world scenarios. However, the robustness testing on synthetic asymmetric data reveals that while one algorithm demonstrates strong performance, the other exhibits limitations. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:54:37Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-14T16:54:37Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
致謝 ii 摘要 iii Abstract iv Table of Contents v List of Figures vii List of Tables ix Chapter 1 Introduction 1 Chapter 2 The EV Charging System and Optimization Problems 4 2.1 The EV Charging System . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 The Optimization Problems . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 The EV Charging Station Routing Policy . . . . . . . . . . . . . . . 6 2.2.2 The Objective Function . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.3 Some Extended Problems . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chapter 3 Clustering with Asymmetric Dissimilarity Matrices 13 3.1 Review of Existing Clustering Methods . . . . . . . . . . . . . . . . 13 3.1.1 Naive Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.2 Symmetric Approaches . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.3 Asymmetric Approaches . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.4 Summary of Existing Methods . . . . . . . . . . . . . . . . . . . . 21 3.2 Relaxation for Searching Optimal Cluster Centers . . . . . . . . . . . 21 3.3 Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.1 Directed Partitioning Around Medoids (DiPAM) . . . . . . . . . . . 22 3.3.2 Asymmetric Agglomerative Clustering (AAC) . . . . . . . . . . . . 23 3.3.3 Methods for Comparison . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Chapter 4 Numerical Results 27 4.1 Solving the EV Charging Station Location-Routing Problem . . . . . 27 4.1.1 Charging Demand Data . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.2 Performance Evaluation and Comparison . . . . . . . . . . . . . . 32 4.2 Robustness Testing with Synthetic Asymmetric Dissimilarity Matrices 39 4.2.1 Generation of Synthetic Asymmetric Dissimilarity Matrices . . . . . 39 4.2.2 Robustness Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Chapter 5 Conclusion 46 References 48 | - |
dc.language.iso | en | - |
dc.title | 利用非對稱相異性度量求解充電車系統規劃與其他應用之最佳化問題 | zh_TW |
dc.title | Utilizing Asymmetric Dissimilarity Measures for Optimizing Electric Vehicle Charging Operations and Other Applications | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 洪一薰;黃奎隆;喻奉天 | zh_TW |
dc.contributor.oralexamcommittee | I-Hsuan Hong;Kwei-Long Huang;Vincent F. Yu | en |
dc.subject.keyword | 電動車充電站區位途程問題,平均旅行距離,平均旅行時間,最短行車距離,非對稱分群, | zh_TW |
dc.subject.keyword | EV charging station location-routing problem,Mean travel distance,Mean travel time,Shortest driving distance,Asymmetric clustering, | en |
dc.relation.page | 51 | - |
dc.identifier.doi | 10.6342/NTU202402910 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-06 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工業工程學研究所 | - |
顯示於系所單位: | 工業工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 12.19 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。