Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94105
Title: | 利用層次圖模型進行社群偵測及圖結構之估計 A Unified Framework for Graph Estimation and Community Detection using Hierarchical Graphical Models |
Authors: | 劉宸熙 Chen-Hsi Liu |
Advisor: | 楊鈞澔 Chun-Hao Yang |
Keyword: | 社群偵測,圖模型,共變異數選擇,貝氏推論,無限關係模型, Community detection,Graphical model,Covariance selection,Bayesian inference,Infinite relationship model, |
Publication Year : | 2024 |
Degree: | 碩士 |
Abstract: | 圖或者說網絡在社群偵測和圖模型中分別擔任輸入和輸出的角色。由於理解社群結構可提高對圖結構的理解,因此在使用圖模型獲得圖結構之估計後,人們渴望識別潛在的分組。不同於先使用圖模型再對其估計值進行社群偵測,我們的層次圖模型同時估計圖結構和社群結構。該模型將常態-威夏特模型的部分特徵與貝氏社群偵測相融合。最後,我們為後驗推斷開發了一種高效的吉布斯取樣。 Graphs or networks respectively serve as input and output in community detection and graphical models. As understanding community structure enriches our comprehension of graphs, there is a desire to identify potential groupings after obtaining a graph estimate using a graphical model. Rather than sequentially applying a graphical model followed by community structure detection, our hierarchical graphical model concurrently estimates both the graph and community structures. This model blends aspects of the normal-Wishart model with Bayesian community detection. Finally, we develop an efficient Gibbs sampler for posterior inference. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94105 |
DOI: | 10.6342/NTU202401933 |
Fulltext Rights: | 同意授權(全球公開) |
Appears in Collections: | 統計與數據科學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-112-2.pdf | 909.12 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.