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摘要

圖或者說網絡在社群偵測和圖模型中分別擔任輸入和輸出的角色。由於理解

社群結構可提高對圖結構的理解，因此在使用圖模型獲得圖結構之估計後，人們

渴望識別潛在的分組。不同於先使用圖模型再對其估計值進行社群偵測，我們的

層次圖模型同時估計圖結構和社群結構。該模型將常態­威夏特模型的部分特徵與

貝氏社群偵測相融合。最後，我們為後驗推斷開發了一種高效的吉布斯取樣。

關鍵字：社群偵測、圖模型、共變異數選擇、貝氏推論、無限關係模型
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Abstract

Graphs or networks respectively serve as input and output in community detection

and graphical models. As understanding community structure enriches our comprehen­

sion of graphs, there is a desire to identify potential groupings after obtaining a graph

estimate using a graphical model. Rather than sequentially applying a graphical model fol­

lowed by community structure detection, our hierarchical graphical model concurrently

estimates both the graph and community structures. This model blends aspects of the

normal­Wishart model with Bayesian community detection. Finally, we develop an effi­

cient Gibbs sampler for posterior inference.

Keywords: Community detection, Graphical model, Covariance selection, Bayesian in­

ference, Infinite relationship model
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Chapter 1 Introduction

1.1 Gaussian Graphical Model

Graphicalmodel is a powerful tool for illustrating the conditional dependencies among

numerous variables. Its applications span various domains, like protein­signaling (Sachs

et al., 2005), disease diagnosis (Sedgewick et al., 2018), financial flows (Giudici and

Spelta, 2016), social network analysis (Goodreau, 2007) and image segmentation (Zhang

and Ji, 2010). A Gaussian graphical model (GGM) posits that the joint distribution of

variables is a Gaussian distribution. The covariance matrix Σ is restricted by the Markov

property (Lauritzen, 1996) induced by the graph structure. In essence, GGM is a covari­

ance estimation problem. A Bayesian approach entails placing priors on both the covari­

ance matrix and the graph, with many opting for priors linked to the Wishart distribution

due to its conjugacy properties. In GGM, the presence or absence of edges constrains ele­

ments of the inverse covariance matrix Σ−1 to be zero. Consequently, inferring the graph

structure is a covariance selection problem. Intuitively, we can compute the inverse of

the sample covariance matrix, Σ̂−1, then shrink those components with small values to­

wards zero. In frequentist and Bayesian approaches, selection or shrinkage procedures

commonly use penalty functions and shrinkage priors, respectively. As the graph space is

discrete, many priors assign a nonzero probability to the exclusion of an edge, resembling

1
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a shrinkage prior. There are several objective choices for priors on the graph: a uniform

distribution where all graphs have the same probability, and a binomial distribution on

edge connectivity:

P (G) ∝ pE
+

(1− p)E
−
, (1.1)

where p is the link probability, E+ and E− are the number of links and nonlinks of edge.

1.2 Community Detection in Graphs

In network analysis, community detection, also known as graph clustering or net­

work clustering, is increasingly gaining popularity. In Figure 1.1, we show a collabora­

tion network among scientists. Each node in this network corresponds to a scientist, and

the shape of each node indicates their particular research area. Edges connecting nodes

indicate that the two scientists have collaborated on at least one paper together. The pres­

ence of community structure enhances our understanding of interactions between vertices

and offers an alternative perspective on vertex relationships. While it may seem intuitive

that a node with numerous connections is significant, even in the absence of community

structure, nodes that bridge different clusters play a crucial role. These nodes represent

interdisciplinary scientists, whose connections, although fewer, are equally essential.

Imagine Figure 1.1 without a group label, community detection aims to figure out

how vertices are organized into groups, called communities or clusters. According to

Fortunato and Hric (2016), there are five primary types of methods used to identify com­

munities.

2
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Figure 1.1: Collaboration network of scientists working at the Santa Fe Institute. Nodes
represent scientists, and the shape of each node reflects their research areas. Edges connect
coauthors. Reprinted figure from Girvan and Newman (2002).

1. Spectral: The eigenvectors of graph matrices, such as the adjacency matrix and

Laplacian, encapsulate group information. Spectral clustering involves transform­

ing each node into Euclidean space based on these eigenvectors (Luxburg, 2007).

Once the entire graph is mapped into Euclidean space, standard clustering algo­

rithms like k­means can be applied.

2. Statistical inference: Statisticians often address problems using probability models.

The Stochastic Block Model (SBM, Nowicki and Snijders (2001)) stands as the

predominant generative model for graphs with community structure. It describes

the generative process of a graph by randomly partitioning vertices into different

groups. While its likelihood resembles (1.1), the link probability in SBM is not a

constant p; rather, it varies based on the group index of the nodes.

3. Optimisation: This approach aims to maximize the quality function that describes

3
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the goodness of clusters within a graph. A commonly used quality function for this

purpose is modularity (Newman and Girvan, 2004). Due to the superexponential

growth in the number of possible graphs with increasing nodes, maximizing modu­

larity often necessitates approximations.

4. Dynamics process: Propose a dynamic process on a graph and make inferences

based on the realization of the process (Zhou, 2003). For example, consider sug­

gesting a random walk starting from node i, whose outcome is a sequence of nodes.

If a node j appears multiple times in the sequence, it indicates proximity to node i

and suggests a higher likelihood of belonging to the same community as node i.

5. Dynamics clustering: This approach requires a sequence of graphs, denoted as

G1, G2, ..., Gn, to represent the growth of the graph over time. Imagine graphs as

plants, the root, stem, leaf, and flower correspond to different communities within

the graph. As the plant grows, its organs extend from the existing body, mirroring

the expansion of communities within the evolving graph structure. Hence, we can

utilize the disparity between Gt and Gt+1 to detect clusters (Asur et al., 2007).

In addition to the aforementioned, there exists a plethora of diverse techniques in com­

munity detection. We will not delve extensively into all of these methods, aside from the

probability model, which plays a pivotal role in our main work.

1.3 Motivation and Methodology

Community detection and graphical models share a common component: graphs.

Graphs respectively serve as input and output in community detection and graphical mod­

els. By exploring the community structure, we can gain deeper insights into the graph.

4
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Thus, it is unsurprising that we can perform community detection after obtaining a graph

estimator Ĝ using a graphical model. Rather than a two­step approach, we aim to establish

a one­step approach by incorporating group structure into the graphical model. Unlike tra­

ditional community detection, which focuses on uncovering community structures within

a given graph, our task resembles traditional clustering throughout a hierarchical graphical

model.

To estimate a graph with community structure, Tan et al. (2015) proposed cluster

graphical LASSO, a two­stage method. First, they identify the community structure based

on the empirical covariance matrix. Then, they apply the graphical LASSO (Friedman

et al., 2007) to each block. Sun et al. (2014) made a Bayesian GGM with block structure

on the inverse covariance matrixΣ−1. However, both models have a significant drawback:

they ignore the edges between different communities. For example, in the collaboration

network, connections between different clusters represent interdisciplinary programs. If

these links are absent, identifying interdisciplinary scientists becomes challenging.

Castelletti et al. (2018) made the prior (1.1) more flexible by introducing a beta prior

on the link probability. This motivates the idea that we can establish statistical properties

through a hierarchical prior on the graph. Additionally, Mørup and Schmidt (2012) pro­

posed the Bayesian community detection (BCD)model, which improves upon the stochas­

tic block model by incorporating a hierarchical structure on link probability. If we assert

that connections within clusters should be denser than those between them, it’s logical to

consider the BCD model as a generative prior for (1.1) to introduce group structure.

The main contributions of the thesis are twofold. Firstly, instead of estimating Ĝ and

subsequently conducting community detection, we propose a one­step approach that com­

5
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bines graphical modeling and community detection. This results in a Bayesian hierarchi­

cal model capable of simultaneously estimating both the graph and community structure.

Secondly, we develop an efficient Gibbs sampler for inference. We observe that Gibbs

sampling can be divided into two parts: a graphical part and a BCD part, both of which

can be generated by existing algorithms respectively.

The rest of the thesis is organized as follows. In Chapter 2, we briefly review the rele­

vant preliminaries, including graphs, graphical models, and probability models in commu­

nity detection. Chapter 3 outlines our primary contributions, including a detailed descrip­

tion of the proposed model and the MCMCmethod employed for inference. In Chapter 4,

we compare our method to alternative algorithms through simulations and apply it to ovar­

ian cancer data. Finally, we discuss our findings and provide a summary in Chapter 5.

6
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Chapter 2 Preliminaries

2.1 Graph

First, we establish our notation and define basic graph terminology.

1. Graph,vertices and edge: A graph G comprises two parts: the vertex set V and

the edge set E. V is a finite set naming each node, such as {Alice, Bob, . . .}. For

simplicity, we assume V = {1, 2, . . . , p} with p vertices. An edge e ∈ E is a pair

of vertices (u, v) ∈ V × V .

2. Directed and undirected: We define an edge (u, v) ∈ E as directed if the reversed

edge (v, u) /∈ E. If both (u, v) and (v, u) lie in E, the edge is undirected. A graph

G is considered a directed (undirected) graph if its edge set only contains directed

(undirected) edges. In this paper, we solely focus on undirected graphs.

3. Neighbor: We define u as a neighbor of v if (u, v) is an undirected edge in E. Let

nb(v) denote the set of all neighbors of v.

4. Adjacency matrix: Consider a graph G = (V,E) with p nodes. The adjacency

matrix A is a p× p matrix with elements of 0 or 1. Its component Aij equals one if

(i, j) ∈ E, and zero otherwise. A straightforward observation is thatA is symmetric

if and only if the graph is undirected.

7
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5. Subgraph: A subgraphGA ofG contains a subset of verticesA ⊆ V and an induced

edge set EA = E ∩ (A× A).

6. Completeness and clique: A graph is complete if (u, v) ∈ E for any u ̸= v, meaning

there is an edge between every pair of nodes. A clique C is a maximal complete

subgraph of G. By slight abuse of notation, we sometimes treat C = {1, 2, 3} as a

vertex set.

7. Path: A path inG is a sequence of distinct vertices,v0, v1, . . . , vk such that (vi−1, vi) ∈

E for i = 1, . . . , k.

8. Separated: We say a subset S ⊆ V separates u and v, or u and v are separated by S,

if all paths from u to v intersect S. LetA andB be subsets of V . We say S separates

A and B if S separates every pair u ∈ A and v ∈ B.

9. Decomposable: We say (A, S,B) decomposes the graph G if V = A ∪ B, S =

A ∩ B, S separates A and B, and S induces a complete subgraph. A graph with

such a decomposition is termed a decomposable graph.

Decomposable graphs, also known as chordal graphs, play a crucial role in graphical mod­

els, as sampling non­decomposable graphs demands significant computational resources.

This aspect will be further elaborated on in Section 3.

2.2 Graphical Model

Consider a random variable y = (y1, y2, . . . , yp) whose joint distribution follows a

p­dimensional Gaussian distribution with covariance matrix Σ and zero mean. It is well­

known that the vanishing of Σij implies independence between yi and yj . Similarly, for

8
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the inverse covariance matrixΩ = Σ−1, often referred to as the precision matrix, a similar

result holds. IfΩij is zero, then yi ⊥ yj | y−{i,j}, indicating that yi and yj are conditionally

independent given all other variables. In terms of graphical representation, the absence of

an edge between yi and yj signifies this conditional independence. Hence, we can express

this relationship as:

yi ⊥ yj | y−{i,j} ⇐⇒ Ωij = 0 ⇐⇒ no edge between yi and yj.

Looking from another angle, given a graph G, the precision matrix is constrained by its

Markov property. The precision matrix Ω lies inM+(G), the set of symmetric positive­

definite matrices with zero entries for (i, j) /∈ E. A straightforward Bayesian model

proposes priors on both the precision matrix and the graph structure as follows:

y | Ω ∼ N(0,Ω−1), Ω | G ∼ π(Ω | G), G ∼ π(G). (2.1)

Several priors on the covariance matrix have been proposed. For instance, Dawid and

Lauritzen (1993) suggested the Hyper­Inverse Wishart (HIW) prior for Σ−1 ∈ M+(G),

where G is a decomposable graph. Denoting Σ | G ∼ HIW (b,D), where b and D

represent the degrees of freedom and shape matrix, respectively, for the standard Wishart

distributionW (b,D). The density of the HIW distribution relies on the perfect sequence

of cliques (Lauritzen, 1996). Let C = {C1, C2, . . . , Ct} denote the clique set, and S =

{S2, S3, . . . St} represent the separator set, where

Sj = Cj ∩ (C1 ∪ C2 . . . ∪ Cj−1) .

9
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With C and S defined, the density of the HIW distribution is given by

pG(Σ | b,D) =

∏
C∈C p(ΣC | b,D)∏
S∈S p(ΣS | b,D)

, (2.2)

where p(ΣC | b,D) denotes the inverse­Wishart density with parameter b,D:

p(ΣC | b,D) ∝ |ΣC |−(b/2+|C|) exp
(
−1

2
tr
(
Σ−1

C DC

))
.

Here, ΣC is the submatrix induced by the vertex setC, |Σ| represents the determinant, and

|C| indicates the cardinality of the set. The G­Wishart distribution serves as a generalized

version of the HIW distribution, expanding its support to non­decomposable graphs. We

denote Ω ∼ WG(b,D) orWA(b,D) with its density given by

pG(Ω | b,D) = I(b,D,G)−1|Ω|
b−2
2 exp(−1

2
tr(ΩD))1Ω∈M+(G),

where I(b,D,G)−1 is the normalizing constant. This prior is conjugate to the Gaussian

distribution and is proper for b > 1. When combined with either the HIW or G­Wishart

distribution, model (2.1) is referred to as the normal­Wishart model. Since the Wishart

distribution is the conjugate prior, many priors on the covariance matrix are Wishart dis­

tributions with some modifications. For example, Kundu et al. (2019) proposed the regu­

larized Wishart distribution, which shrinks the small non­diagonal elements of Ω without

imposing a prior on G. Additionally, Cao et al. (2016) achieved selection consistency

using the DAG­Wishart prior.

In model (2.1), our objective is to generate posterior samples of both Ω andG. How­

ever, when our primary interest is in G alone, sampling becomes more efficient by inte­

grating out Ω. Let Y = (Y1, Y2, . . . , Yn)
T denote the data matrix collecting n samples

10
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from y. The marginal posterior distribution of Ω is available in closed form

π(G | Y ) = π(G)

∫
M+(G)

p(Y | Ω, G)p(Ω | G)dΩ

∝ π(G)

∫
M+(G)

|Ω|n2 exp
(
−
∑n

i=1
YiΩY T

i

2

)
× |Ω| b−2

2 exp
(
− tr(ΩD)

2

)
I(b,D,G)

dΩ

∝ π(G)
I(b∗, D∗, G)

I(b,D,G)
, (2.3)

where b∗ = b+ n and D∗ = D + Y TY . Though the normalizing constant has an explicit

form (Uhler et al., 2018), computing it for general cases proves challenging. This constant

has a simple closed form only when the graph is decomposable, and as indicated by (2.2),

it equals the ratio of the normalizing constants of a series of standardWishart distributions.

Giudici and Green (1999) conducted MCMC sampling exclusively within the space

of decomposable graphs due to this advantage. While restricting the graph space indeed

renders the ratio computable, it fails to accurately reflect the true distribution. Another

drawback is the necessity to check whether a graph is decomposable by drawing G from

the proposal distribution every time. In Giudici and Green (1999), the proposal is not

symmetric and requires computing the number of decomposable graphs Gt+1 that can be

reached from Gt, imposing a significant computational burden and reducing efficiency.

To sample from the normal­Wishart model, encompassing non­decomposable graphs, a

straightforward approach is to approximate the normalizing constant I(b,D,G) rather than

obtaining its exact value. For more details, refer to Wang and Li (2012).

11
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2.3 SBM and IRM

In the introduction, we introduced several community detection methods, despite

the lack of a formal definition for ”community.” Numerous definitions of ”community”

have been discussed, but none are universally accepted. Many of these definitions re­

volve around a central concept: that connections within a community should be denser

and stronger than those between communities. From an engineering standpoint, metrics

such as edge density and degree within and between communities are potential candidates

for characteristic measures. In statistics, we would like to use the probability model to

describe edge density.

Let L represent the number of clusters, η denote an L × L matrix with ηij ∈ [0, 1]

indicating the probability of a link between clusters, and z = (z1, z2, ..., zp) be a partition

of p vertices. For example, with p = 4, z = (1, 1, 2, 3) indicates nodes 1 and 2 are in

group one, node 3 is in group 2, and node 4 is in group 3. Note that the representations

(1, 1, 2, 3) and (d, d, α, θ) are equivalent. To maintain clarity in notation, we let zi be an

integer between 1 and L. SBM model is given by:

Aij ∼ Ber(ηzizj). (2.4)

Adopting a Bayesian approach, we introduce a beta­binomial model:

Aij ∼ Ber(ηzizj), ηlm ∼ Beta(β, β). (2.5)

A major drawback of SBM is that K must be assigned beforehand, yet in real networks,

determining the number of potential communities is challenging. One possible approach

12
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is first to estimate K and then apply SBM. Alternatively, it’s more straightforward to

construct a hierarchical model by introducing another prior on the partition z. This model

referred to as a special case of the Infinite Relation Model (IRM, Kemp et al. (2006)) is

defined as follows:

Aij ∼ Ber(ηzizj), ηlm ∼ Beta(β, β), z ∼ CRP (α). (2.6)

Here, CRP stands for the Chinese Restaurant Process. CRP is a discrete­time stochastic

process related to the Dirichlet process. Its distribution can be expressed through condi­

tional probability as follows:

P (zi = l | z1, z2, . . . , zi−1) =


nl

i−1+α
1 ≤ k ≤ L

α
i−1+α

k = L+ 1

(2.7)

or by its probability mass function:

P (z) =
αLΓ(α)

Γ(p+ α)

L∏
l=1

Γ(nl). (2.8)

Here, nl represents the size of cluster l and p is the length of z. The conditional distri­

bution (2.7) describes the process as follows: whenever a customer enters the restaurant,

they sit at an occupied table with rate nk or at an empty table with rate α > 0.
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Chapter 3 Graphical community

detection

3.1 Graphical Community Detection model

Mørup and Schmidt (2012) introduced a cluster gap γ to the IRM, reflecting the idea

that connections should be stronger within communities. This modification, restricting

the non­diagonal elements of η dominated by the diagonal elements, leads to the Bayesian

Community Detection model:

Cluster structure : z ∼ CRP (α)

Within Link Probability : ηll ∼ Beta(β, β)

Cluster Gap : γl ∼ Beta(θ, θ), xlm = min [ηllγl, ηmmγm] (3.1)

Between Link Probability : ηlm ∼ BetaInc(β, β, xlm)

Link : Aij ∼ Ber(ηzizj).

Here, the termBetaInc(β, β, x) represents the constrained beta distribution in the interval

[0, x]. The use of xlm and BetaInc ensures that ηlm is smaller than both ηll and ηmm,

resulting in a higher internal link probability compared to external links. Combining (2.1)

15

http://dx.doi.org/10.6342/NTU202401933


doi:10.6342/NTU202401933

and (3.1), we obtain the full model:

y | Ω ∼ N(0,Ω−1), Ω | A ∼ WA(b,D), Aij ∼ Ber(ηzizj)

Cluster structure : z ∼ CRP (α)

Within Link Probability : ηll ∼ Beta(β, β) (3.2)

Cluster Gap : γ ∼ Beta(θ, θ), xlm = min [ηllγl, ηmmγm]

Between Link Probability : ηlm ∼ BetaInc(β, β, xlm).

We name the resultant model (3.2) graphical community detection (GCD). The joint like­

lihood with n observation is given by:

P (Y,Ω, A, z, η, γ | ψ = (b,D, α, β, θ))

=

[
n∏

i=1

(2π)−
p
2 | Ω |

1
2 exp

(
−1

2
Y T
i ΩYi

)]

×
[
I(b,D,A)−1 | Ω |

b−2
2 exp

(
−1

2
tr(ΩD)

)]
×

[
L+1∏
l=1

L+1∏
j=l

η
n+
lj

lj (1− ηlj)
n−
lj

]
×

[
L+1∏
l=1

ηβ−1
ll (1− ηll)

β−1

B(β, β)

]

×

[
L+1∏
l=1

γθ−1
l (1− γl)

θ−1

B(θ, θ)

]
×

[
L∏
l=1

L+1∏
j=l+1

ηβ−1
lj (1− ηlj)

β−1

Bxlj
(β, β)

]

×

[
αLΓ(α)

Γ(p+ α)

L∏
l=1

Γ(nl)

]
.

B(β, β), Bx(β, β) are the beta function and incomplete beta function. n+
lj and n

−
lj represent

the number of links and nonlinks between cluster l and j. We use η ∈ M(L+1)×(L+1) and

γ ∈ RL+1 because we require pseudo­parameters for potential new clusters when updating
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cluster z. After some calculation, we obtain:

P (Y,Ω, A, z, η, γ | ψ)

∝
[
I(b,D,A)−1 | Ω |

b∗−2
2 exp

(
−1

2
tr(ΩD∗)

)]
×

[
L+1∏
l=1

η
n+
ll+β−1

ll (1− ηll)
η−ll+β−1

]
×

[
L+1∏
l=1

γθ−1
l (1− γl)

θ−1

]
(3.3)

×

 L∏
l=1

L+1∏
j=l+1

η
n+
lj+β−1

lj (1− ηlj)
n−
lj+β−1

Bxlj
(β, β)

×

[
αLΓ(α)

Γ(p+ α)

L∏
l=1

Γ(nl)

]
.

As our main focus lies onA and z, it’s more efficient to integrate out the other parameters.

Let η̇ represent the diagonal part of η. Integrating out η̇ and γ is challenging due to the

presence of the term Bxlj
(β, β) in the denominator. Non­diagonal element of η can be

integrated as incomplete beta function and (3.3) becomes

P (Y,Ω, A, z, η̇, γ | ψ)

∝
[
I(b,D,A)−1 | Ω |

b∗−2
2 exp

(
−1

2
tr(ΩD∗)

)]
×

[
L+1∏
l=1

η
n+
ll+β−1

ll (1− ηll)
η−ll+β−1

]
×

[
L+1∏
l=1

γθ−1
l (1− γl)

θ−1

]
(3.4)

×

[
L∏
l=1

L+1∏
j=l+1

Bxlj
(n+

lj + β, n−
lj + β)

Bxlj
(β, β)

]
×

[
αLΓ(α)

Γ(p+ α)

L∏
l=1

Γ(nl)

]
.

With (3.4), we can derive the full conditional distribution and update each parameter in­

dividually.
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3.2 Gibbs Sampler

We begin by addressing the BCD parameter (η, γ, z). For within link probability ηll,

the conditional distribution is proportional to:

f(ηll | . . . ) ∝
[
η
n+
ll+β−1

ll (1− ηll)
n−
ll+β−1

]
×

[∏
j ̸=l

Bxlj
(n+

lj + β, n−
lj + β)

Bxlj
(β, β)

]
.

We then utilize the Metropolis­Hastings (MH) algorithm with an appropriate proposal

distribution to update ηll. Specifically, we employ independent sampling π(η∗ll | ηll) ∼

Beta(β, β) as the proposal distribution. In the special case where l = L + 1, as there

are no individuals in cluster L + 1, the parameters n+
(L+1)j and n

−
(L+1)j are zero for all

j = 1, 2, . . . , L + 1. Consequently, the pseudo­parameter can be directly generated from

Beta(β, β).

Similarly, for the cluster gap γ, the conditional distribution is given by:

f(γl | . . . ) ∝
[
γθ−1
l (1− γl)

θ−1
]
×

[∏
j ̸=l

Bxlj
(n+

lj + β, n−
lj + β)

Bxlj
(β, β)

]
.

We select π(γ∗l | γl) ∼ Beta(β, β) as our proposal distribution. Furthermore, γ(L+ 1)

follows Beta(θ, θ) for the same reason. During each update, we perform 10 samplings,

following the approach outlined in Mørup and Schmidt (2012). To update (Ω, A), we

require the non­diagonal part of η in addition to η̇. According to the likelihood (3.3), we

have:

f(ηlj | . . . ) ∼ BetaInc(n+
lj + β − 1, n−

lj + β − 1, xlj).

Directly drawing η∗lj from an unconstrained beta distribution until it is less than xlj might
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encounter difficulties when xlj is extremely small. Therefore, we utilize inverse transform

sampling.

For the cluster z, determining the posterior distribution from (3.4) is not straightfor­

ward, as the transition from zi to z∗i may impact n+
lj , n

−
lj and L. We derive the formula of

p(zk | . . .) as follows:

P (zk = l | z−k, η, γ, A, Y, ψ)

=
P (zk = l, z−k, η, γ, A, Y | ψ)

P (z−k, η, γ, A, Y | ψ)

=
P (zk = l, z−k)

P (z−k)

P (η, γ, A, Y | zk = l, z−k, ψ)

P (η, γ, A, Y | z−k, ψ)
.

The first term represents the conditional distribution of CRP (2.7). As for the second term,

its denominator is a constant for l and can thus be disregarded. Hence, we arrive at:

P (zk = l | z−k, η, γ, A, Y, ψ) ∝


nl × P (η, γ, A, Y | zk = l, z−k, ψ) 1 ≤ l ≤ L

α× P (η, γ, A, Y | zk = l, z−k, ψ) l = L+ 1

(3.5)

The term P (η, γ, A, Y | zk = l, z−k, ψ) represents (3.4) without the PMF of CRP . This

illustrates whywe require parameters for an additional group; it simplifies the computation

of P (zk = L+ 1 | z−k, η, γ, A, Y ). Otherwise, P (zk = L+ 1 | z−k, η, γ, A, Y ) becomes

nonsensical if η ∈ ML×L and γ ∈ RL. When computing (3.5), many duplicate terms can
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be canceled out. We can derive the representation with nL+1 = 1:

P (zk = l | . . .) ∝ αLnl × η
nk(l)

+

ll (1− ηll)
nk(l)

−

×
∏
m̸=l

Bxlm
(Nk(l,m)+ + nk(m)+ + β,Nk(l,m)− + nk(m)− + β)

Bxlm
(Nk(l,m)+ + β,Nk(l,m)− + β)

,

(3.6)

where nk(l)
+ and nk(l)

− denote the number of links and nonlinks between node k and

cluster l. Nk(l,m)+ and Nk(l,m)− represent the number of links and nonlinks between

between cluster l andm excluding node k.

For A and Ω, the joint posterior distribution is given by

P (Ω, A | . . .) ∝
[
I(b,D,A)−1 | Ω |

b∗−2
2 exp

(
−1

2
tr(ΩD∗)

)]
(3.7)

×

[
L+1∏
l=1

η
n+
ll+β−1

ll (1− ηll)
η−ll+β−1

]
×

[
L∏
l=1

L+1∏
j=l+1

Bxlj
(n+

lj + β, n−
lj + β)

Bxlj
(β, β)

]
,

as number of links and nonlinks n+ and n− are related to the adjacency matrix A. Using

the MH algorithm, where each step involves adding or deleting an edge, leads to the Re­

versible Jump Markov Chain Monte Carlo (RJMCMC) proposed by Green (1995), which

is fundamental in Bayesian graphical models. We may integrate out Ω in the likelihood

(3.4) to obtain the marginalized graph posterior:

P (A | . . .) ∝
[
I(b∗, D∗, A)

I(b,D,A)

]
×

[
L+1∏
l=1

η
n+
ll+β−1

ll (1− ηll)
η−ll+β−1

]

×

[
L∏
l=1

L+1∏
j=l+1

Bxlj
(n+

lj + β, n−
lj + β)

Bxlj
(β, β)

]
. (3.8)

The reason P (A | . . .) aligns with (2.3) is that the hierarchical model (3.2) reduces to

the normal­Wishart model (2.1) when the BCD parameters are fixed. Therefore, updating
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(Ω, A) in each iteration can be done as in the normal­Wishart model. Castelletti et al.

(2018) and Consonni et al. (2017) applied MCMC with the marginalized graph posterior

and have to face

I(b∗, D∗, A∗)I(b,D,A)/I(b,D,A∗)I(b∗, D∗, A)

when computingMH ratio. This term can be split into two ratios of normalizing constants:

I(b,D,A)/I(b,D,A∗) and I(b∗, D∗, A∗)/I(b∗, D∗, A).

3.3 Approximation for normalizing constant

The normalizing constant can be computed using (2.2) if A is decomposable. For

non­decomposable graphs, Uhler et al. (2018) provides an explicit formula for the gen­

eral I(b,D,A) in Theorem 3.3. However, this formula is too complex to be practically

employed. Initially, RJMCMC was designed solely for decomposable graphs due to this

complexity. When setting D to be the identity matrix, the formula becomes more man­

ageable, as shown in Corollary 3.4 (Uhler et al., 2018). Nevertheless, it remains com­

putationally expensive and cannot handle I(b∗, D∗, A). Since the exact formula doesn’t

offer realistic assistance, the next best option is approximation. Let’s briefly discuss some

approximate methods for computing I(b,D,A).

1. Monte Carlo approximation: Atay­Kayis andMassam (2005) decomposed I(b,D,A)

into a determined part with a expected value term. Assume D = Ip and writing

Ω = ΦTΦ as Cholesky decomposition, we obtain:

I(b, Ip, A) =

[
p∏

i=1

π
vi
2 2

b+vi
2 Γ

(
b+ vi
2

)]
× E

(
e−

Q
2

)
, (3.9)
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where vi = | nb(i) ∩ {i+ 1, . . . , p} | and

Q =
∑

(i,j)/∈E,i<j

ϕ2
ij.

Given that ϕij ∼ N(0, 1) for (i, j) ∈ E, ϕ2
ii ∼ χ2

b+vi
and Q is a function of

them, approximating I(b, Ip, A) reduces to a simple Monte Carlo estimation task

on E
(
e−

Q
2

)
.

2. Laplace approximation: Lenkoski and Dobra (2011) proposed a Laplace approxi­

mation to I(b,D,A), given by:

̂I(b,D,A) = (2π)
|V|
2 exp

{
f(Ω̂)

}
|H(Ω̂)|−

1
2

where

f(Ω) =
b− 2

2
log|Ω| − 1

2
tr(DΩ), V = {(i, j) ∈ V × V | i ≤ j, i = j or (i, j) ∈ E} ,

Ω̂ is the mode ofWG(b,D) and H is the Hessian matrix. The mode Ω̂ can be com­

puted through the iterative proportional scaling algorithm (Speed andKiiveri, 1986).

3. Exchange algorithm: This approach is also known as the auxiliary variable ap­

proach. Murray et al. (2006) considered the joint distribution with an extra variable

p(x, θ | y), which preserves the target posterior distribution p(θ | y). Through this

strategy, one can cancel out the intractable normalizing constant in the MH ratio

using a well­designed proposal distribution.

Based on the reformulation in (3.9), Reza Mohammadi and Letac (2023) approximated

the ratio of I(b,D,A−e)/I(b,D,A) instead of I(b,D,A) itself, where A−e is A with the
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edge e removed. The approximation takes the form:

I(b, Ip, A
−e)

I(b, Ip, A)
≈ 1

2
√
π

Γ
(
b+d
2

)
Γ
(
b+d+1

2

) , (3.10)

where d denotes the number of length­two paths connecting the endpoints of e. In the

special case when G is decomposable, the approximation (3.10) becomes an equation.

Reza Mohammadi and Letac (2023) incorporated (3.10) into the BDMCMC algorithm,

which is a continuous­time version of RJMCMC. Their algorithm is implemented in the

R package bdgraph. We utilize the function bdgraph with fifteen iterations to update A

in our Gibbs sampling.
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Chapter 4 Simulations and real data

analysis

4.1 Simulation result

To demonstrate the rationality of simultaneous estimation of graph and community,

we compare our model against the two­stage approach, specifically the G­Wishart prior

with birth­death MCMC (Mohammadi and Wit, 2015) combined with Bayesian commu­

nity detection (Mørup and Schmidt, 2012). Additionally, we compare our graph estimation

results to those obtained using the Bayesian graphical LASSO (Wang, 2012) and its adap­

tive version. The aforementioned graphical models are accessible through theR packages

BDgraph, BayesianGLasso, and abglasso, while Mørup and Schmidt (2012) provided

Matlab code in the article. Since G­Wishart prior with the birth­death MCMC approach

relies on the function ’bdgraph’ in the package BDgraph, we will refer to this method as

bdgraph. We perform the simulation result in the following scenarios:

• Dimension p = 16, 32; sample size n = 3p.

• G­Wishart parameter b = 3; D = Ip.

• Two communities, L = 2, of equal size with η11 = η22 = 0.9.
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• Between­cluster probability η12 ranges over 0, 0.05, 0.1, 0.15, 0.2.

The synthetic data is generated according to the likelihood specified in (3.2): (1) Sam­

ple Aij ∼ Ber(ηzizj) independently. Figure 4.1 shows an example of A under different

η12 sampling. (2) Ω | A ∼ WA(b,D) (3) Generate n samples following the Gaussian

distribution, y | Ω ∼ N(0,Ω−1).

Figure 4.1: Adjacency matrix with η12 = 0.05 (left) and η12 = 0.20 (right) in the data gen­
erating process. The black dot indicates the edge and the white dot indicates the absence
of edge.

Our inference involves estimating the graph A and the community structure Z. In

graph estimation, two common approaches are Maximum A Posteriori (MAP) estimation

and the inclusion probability method. To obtain the MAP estimator, we can either use

the mode of posterior samples or record the posterior likelihood and identify the highest

one. However, since the graph space grows super­exponentially for p, using the mode

of posterior samples requires a long chain for good performance. The latter method is

only feasible for decomposable graphs due to the normalizing constant I(b,D,A); hence

it cannot be applied here.

Next, the inclusion probability of an edge e = (u, v) is given by P (Auv = 1 |

Y ), which can be estimated by the sample mean of Auv. The graph estimator Â consists

of those edges with an inclusion probability higher than a given threshold. When the
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threshold is set to 0.5, this approach is known as the median probability model and has

been shown to be predictively optimal by Barbieri and Berger (2004). Instead of a 0.5

threshold, we use the Area Under the Curve (AUC) to evaluate the performance of those

above Bayesian graphical models.

For the community detection, we suggest themode in mode estimator. We first take

mode on the number of clusters L̂ = l among all posterior samples. After collecting

the posterior samples with L = l, we take mode again on the cluster z among these sam­

ples. We use the normalized mutual information (NMI) to measure the performance of the

community estimation. NMI measures the similarity of two partitions and is defined as

2I(z1,z2)
H(z1)+H(z2)

, where the I(·, ·) is the mutual information andH(·) is the entropy. The value

of NMI ranges from 0 (two partitions are independent) to 1 (two partitions are identical).

Our simulation results for AUC and NMI are presented in Tables 4.1 and 4.2, re­

spectively, based on 100 repetitions. In each scenario, we set the G­Wishart parameters

b = 3;D = Ip, consistent with the data generating process, and used β = θ = 1. The

parameter α varies with the dimension p, being α = 1 when p = 16 and α = 0.8 when

p = 32. For each repetition, the MCMC iterations of each algorithm are as follows:

1. p = 16

• GCD: 600 iterations, with the first 100 iterations burned.

• BDMCMC: 6000 iterations, burning the first half, followed by BCD with 600

iterations, burning the first 100.

• Bayesian graphical LASSO and its adaptive version: 6000 iterations, burning

the first half.

2. p = 32
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• GCD: 600 iterations, with the first 100 iterations burned.

• BDMCMC: 8000 iterations, burning the first half, followed by BCD with 600

iterations, burning the first 100.

• Bayesian graphical LASSO and its adaptive version: 8000 iterations, burning

the first half.

p = 16 p = 32

η12 GCD bdg+BCD bglasso abgl GCD bdg+BCD bglasso abgl

0 0.97 (2.5) 0.88 (5.3) 0.81 (4.3) 0.90 (4.6) 0.98 (0.6) 0.88 (3.1) 0.84 (2.5) 0.93 (2.3)
0.05 0.93 (5.8) 0.81 (5.7) 0.81 (4.3) 0.83 (5.1) 0.95 (1.2) 0.80 (3.9) 0.81 (2.2) 0.85 (3.0)
0.1 0.87 (7.7) 0.78 (5.3) 0.79 (4.4) 0.79 (5.4) 0.92 (4.1) 0.77 (2.6) 0.79 (2.6) 0.81 (3.2)
0.15 0.83 (8.2) 0.76 (5.2) 0.77 (4.6) 0.77 (5.2) 0.88 (5.1) 0.74 (2.6) 0.77 (2.1) 0.78 (3.1)
0.2 0.79 (8.7) 0.74 (5.3) 0.76 (4.6) 0.75 (4.8) 0.84 (6.3) 0.73 (2.6) 0.75 (2.3) 0.75 (3.0)

Table 4.1: The AUC of graph estimation (averaged over 100 repetitions), the standard
deviation is given in scale of 10−3. bdg,bglasso, and abgl refer to BDgraph, Bayesian
graphical LASSO, and adaptive Bayesian graphical LASSO. A higher AUC means better
performance.

p = 16 p = 32

η12 GCD bdg+BCD bglasso abgl GCD bdg+BCD bglasso abgl

0 0.88 (1.2) 0.86 (2.0) NA NA 0.88 (1.1) 1.00 (0.1) NA NA
0.05 0.78 (1.8) 0.61 (3.7) NA NA 0.78 (1.1) 0.95 (0.9) NA NA
0.1 0.66 (2.4) 0.40 (3.8) NA NA 0.68 (1.4) 0.87 (1.5) NA NA
0.15 0.54 (2.5) 0.24 (3.1) NA NA 0.62 (1.5) 0.70 (3.2) NA NA
0.2 0.48 (2.7) 0.21 (2.9) NA NA 0.52 (1.7) 0.45 (3.9) NA NA

Table 4.2: The NMI for community detection (averaged over 100 repetitions), the standard
deviation is given in scale of 10−2. A higher NMI means better performance.

For graph estimation, GCD consistently outperforms the other three methods across

all scenarios. However, the difference diminishes as η12 increases, reflecting the greater

difficulty in identifying the true community structure with higher η12. When the ratio

η11/η12 and η22/η12 approach 1, the distinction between the two groups becomes less clear

as Figure 4.1 shows. Figure 4.2 and 4.3 show the posterior distribution generated by GCD.

A smaller η12 captures the true L and enhances the clarity of the group structure, thereby
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improving the accuracy of graph estimation, and vice versa. GCD establishes a beneficial

feedback loop between the graph and the community structure.

Figure 4.2: Posterior distribution of number of cluster under p = 32, η12 = 0.05. The
length of the GCD chain is 600.

Figure 4.3: Posterior distribution of number of cluster under p = 32, η12 = 0.20. The
length of the GCD chain is 600.

In community detection, GCD outperforms bdg+BCD for p = 16 but is surpassed
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for p = 32. GCD maintains stable performance as p increases, whereas the NMI of the

two­stage approach improves. This enhancement can be attributed to the increased charac­

teristic size. In our data generation process, matrix A exhibits similar patterns for p = 16

and p = 32 but a larger scale for p = 32. However, higher dimensions do not boost the

NMI of GCD. The space of cluster structures expands more rapidly than the integer par­

tition, which grows as exp
{
π
√

2p
3

}
/4p

√
3. Hence, an effective mode estimator requires

adequate support from a sufficiently long chain. Since the likelihood in BCD is available,

they mitigate this issue by selecting the cluster with the highest posterior likelihood.

4.2 TCGA ovarian cancer

The Cancer Genome Atlas (TCGA) is a landmark cancer genomics program that

began in 2006, spearheaded by the National Cancer Institute and the National Human

Genome Research Institute in the United States. TCGA project has provided the most

comprehensive genomic data resource from over 33 types of cancers. TCGA datasets

often include various types of data e.g. gene expression, microRNA expression, DNA

methylation profiles, protein expression, etc. Cancer is driven by complex interactions

between multiple genes and signaling pathways. Graphical models can represent these

interactions and dependencies, providing a comprehensive picture of the underlying bio­

logical processes. We apply GCD to the ovarian cancer data, one of the largest datasets

in the TCGA project. By inferring the gene regulatory network and discovering potential

group structure, researchers can identify key regulatory genes and potential biomarkers

that are crucial for the development and progression of ovarian cancer.

The gene expression data consists of n = 578 samples with measurements for p =
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13, 104 genes. Generally, a graphical model has no restriction on dimension and sample

size but it’s more practical to reduce the number of variables by prior knowledge. Re­

ferring to the study of Shutta et al. (2022), they first selected 156 genes where 59 genes

are downregulated in mucinous ovarian tumors and other 97 genes are upregulated. Next,

they applied the graphical LASSO to these 156 genes and made an interaction graph. We

select 21 genes based on the topological properties of their estimated graph and apply our

GCD to this subset with (p, n) = (21, 578).

Figure 4.4: Posterior distribution of number of clusters generated by GCD in ovarian
cancer data analysis. After burning the first 100 samples, the barplot shows the remaining
500 samples.

Instead of the mode in modemethod, we take the mode of z directly. Although Figure

4.4 shows that themode ofL is 3, the frequency ofL = 3 is scattered across many different

z values, while the frequency of L = 2 is concentrated mostly on a single z.

Shutta et al. (2022) obtained the group structure by a two­stage approach with the

graphical LASSO followed by thewalktrap. Walktrap has been introduced in the dynamics
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process in the chapter 1. In addition to GCD, we also apply bdgraph + BCD method to

the data. Figure 4.5 shows the analysis result of these three approaches. Graphical +

walktrap method indicates four clusters while bdgraph + BCD and GCD only find two.

The reason is that the analysis of graphical LASSO + walktrap is based on 156 genes. We

extract the subgraph induced by the 21 genes from the whole graph. Overall, the three

approaches all agree there are two communities among 21 genes. One group shows up in

the upper left corner consisting of BASP1, DAB2, FLRT2, HEPH, and PDGFD, and four

of them, BASP1, DAB2, FLRT2, and PDGFD are downregulated genes. In other words,

the group in the bottom right corner containing 16 genes are all upregulated genes except

for one. GCD finds the correct ”regulate structure” without modeling the mean of gene

expression.

Figure 4.5: Graph and community estimation by graphical LASSO + walktrap, bdgraph
+ BCD, GCD.
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Chapter 5 Discussion

5.1 Discussion

In this article, we introduce a novel graphical model, GCD, designed for simulta­

neous estimation of both graph and community structures. Our model, GCD, integrates

the normal­Wishart model and BCD. Specifically, we incorporate a group structure into

the normal­Wishart model using a graph­generating process with blocks. The entire BCD

model serves as a complex graph prior π(G). Consequently, the Gibbs sampler can be

partitioned into two components: one for the graph and another for the community. Each

component can be executed by existing algorithms effectively. Given our interest in jointly

estimating both the graph and community, it is reasonable to pursue their combined esti­

mation. In our simulations, we demonstrate that the joint estimation of (z, A) outperforms

separate estimations, particularly in scenarios with small dimensions p, and remains com­

petitive in larger p cases. Moreover, GCD does not enforce Ωij = 0 even if variables i

and j do not belong to the same group. Notably, when between link probabilities are low,

GCD exhibits significant advantages due to the mutually beneficial interactions between

the graph and community structures.
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