Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93477
Title: 協同過濾的中心點正規化
Centroid Regularization on DirectAU for Collaborative Filtering
Authors: 吳庭維
Ting-Wei Wu
Advisor: 林守德
Shou-De Lin
Keyword: 推薦系統,協同過濾,表徵學習,集群,
Recommender Systems,Collaborative Filtering,Representation Learning,Clustering,
Publication Year : 2024
Degree: 碩士
Abstract: 協同過濾(CF)在推薦系統的進步中扮演著關鍵角色,通常涉及三個主要組成部分:編碼器、損失函數和負採樣。現有的研究往往強調設計複雜的編碼器來捕捉更高階的相似性,而忽略了損失函數的影響。在本文中,我們介紹了一種名為「中心點正則化」(CentReg)的新方法,旨在根據用戶和項目的潛在社群結構來調整嵌入向量的長度,進一步增強推薦效果。我們的研究首先發現了DirectAU在嵌入向量長度的潛在問題,然後設計出 CentReg,以正則化的方式輔助 DirectAU,且不與原先的最佳化目標互相衝突。我們對多個數據集進行的全面評估,突出了CentReg在推薦表現和計算效率方面,為對比性損失函數如 DirectAU 在 CF 任務上帶來的提升。
Collaborative filtering (CF) is pivotal to the advancement of recommender systems, typically involving three key components: the encoder, loss function, and negative sampling. Existing research often emphasizes designing complex encoders to capture higher orders of proximity while overlooking the impact of the loss function. In this paper, we introduce Centroid Regularization (CentReg), a novel approach aimed at enhancing recommendations by adjusting embedding magnitudes in CF through the underlying community structures of users and items. Our study first identifies a potential issue with DirectAU related to embedding magnitudes and then designs a regularizer called CentReg to address this issue, without conflicting with the original optimization. Our comprehensive evaluation across multiple datasets highlights the recommendation performance and the training efficiency of CentReg in enhancing contrastive loss methods, such as DirectAU, for collaborative filtering tasks.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93477
DOI: 10.6342/NTU202402486
Fulltext Rights: 未授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
4.08 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved