請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93477
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林守德 | zh_TW |
dc.contributor.advisor | Shou-De Lin | en |
dc.contributor.author | 吳庭維 | zh_TW |
dc.contributor.author | Ting-Wei Wu | en |
dc.date.accessioned | 2024-08-01T16:19:52Z | - |
dc.date.available | 2024-08-02 | - |
dc.date.copyright | 2024-08-01 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-29 | - |
dc.identifier.citation | [1] H. Abdollahpouri. Popularity bias in ranking and recommendation. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, AIES ’19, page 529–530. Association for Computing Machinery, 2019.
[2] H. Abdollahpouri, M. Mansoury, R. Burke, and B. Mobasher. The unfairness of popularity bias in recommendation. arXiv preprint arXiv:1907.13286, 2019. [3] J. Chen, H. Dong, X. Wang, F. Feng, M. Wang, and X. He. Bias and debias in recommender system: A survey and future directions. ACM Transactions on Information Systems, 41(3):1–39, 2023. [4] J. Chen, H. Zhang, X. He, L. Nie, W. Liu, and T.-S. Chua. Attentive collaborative filtering: Multimedia recommendation with item-and component-level attention. In Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval, pages 335–344, 2017. [5] T. Chen, Y. Sun, Y. Shi, and L. Hong. On sampling strategies for neural network-based collaborative filtering. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 767–776, 2017. [6] H. Cohn and A. Kumar. Universally optimal distribution of points on spheres. Journal of the American Mathematical Society, 20(1):99–148, 2007. [7] T. Gao, X. Yao, and D. Chen. Simcse: Simple contrastive learning of sentence embeddings. arXiv preprint arXiv:2104.08821, 2021. [8] Y. Ge, S. Zhao, H. Zhou, C. Pei, F. Sun, W. Ou, and Y. Zhang. Understanding echo chambers in e-commerce recommender systems. In Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval, pages 2261–2270, 2020. [9] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C. Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar, et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural information processing systems, 33:21271–21284, 2020. [10] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang. Lightgcn: Simplifying and powering graph convolution network for recommendation. In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, pages 639–648, 2020. [11] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural collaborative filtering. In Proceedings of the 26th international conference on world wide web, pages 173–182, 2017. [12] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk. Session-based recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015. [13] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In 2008 Eighth IEEE international conference on data mining, pages 263–272. Ieee, 2008. [14] T. Huang, Y. Dong, M. Ding, Z. Yang, W. Feng, X. Wang, and J. Tang. Mixgcf: An improved training method for graph neural network-based recommender systems. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages 665–674, 2021. [15] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM Transactions on Information Systems (TOIS), 20(4):422–446, 2002. [16] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou. Variational deep embedding: An unsupervised and generative approach to clustering. arXiv preprint arXiv:1611.05148, 2016. [17] Y. Koren, S. Rendle, and R. Bell. Advances in collaborative filtering. Recommender systems handbook, pages 91–142, 2021. [18] D. Kowald, M. Schedl, and E. Lex. The unfairness of popularity bias in music recommendation: A reproducibility study. In Advances in Information Retrieval: 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14–17, 2020, Proceedings, Part II 42, pages 35–42. Springer, 2020. [19] D. Lee, S. Kang, H. Ju, C. Park, and H. Yu. Bootstrapping user and item representations for one-class collaborative filtering. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, page 317–326, New York, NY, USA, 2021. Association for Computing Machinery. [20] J.-w. Lee, S. Park, M. Yoon, and J. Lee. uctrl: Unbiased contrastive representation learning via alignment and uniformity for collaborative filtering. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 2456–2460, 2023. [21] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara. Variational autoencoders for collaborative filtering. In Proceedings of the 2018 world wide web conference, pages 689–698, 2018. [22] S. Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–137, 1982. [23] J. MacQueen et al. Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967. [24] K. Mao, J. Zhu, J. Wang, Q. Dai, Z. Dong, X. Xiao, and X. He. Simplex: A simple and strong baseline for collaborative filtering. CIKM ’21, page 1243–1252, New York, NY, USA, 2021. Association for Computing Machinery. [25] L. McInnes, J. Healy, S. Astels, et al. hdbscan: Hierarchical density based clustering. J. Open Source Softw., 2(11):205, 2017. [26] H. Okamura, K. Maeda, R. Togo, T. Ogawa, and M. Haseyama. Flexibly manipulating popularity bias for tackling trade-offs in recommendation. Information Processing & Management, 61(2):103606, 2024. [27] A. v. d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018. [28] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian personalized ranking from implicit feedback. In Proceedings of the 25th conference on uncertainty in artificial intelligence, pages 452–461. AUAI Press, 2009. [29] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen. Collaborative filtering recommender systems. In The adaptive web: methods and strategies of web personalization, pages 291–324. Springer, 2007. [30] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu. Dbscan revisited, revisited: Why and how you should (still) use dbscan. ACM Trans. Database Syst., 42(3), jul 2017. [31] D. Sculley. Web-scale k-means clustering. In Proceedings of the 19th international conference on World wide web, pages 1177–1178, 2010. [32] X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques. Advances in artificial intelligence, 2009, 2009. [33] C. Wang, Y. Yu, W. Ma, M. Zhang, C. Chen, Y. Liu, and S. Ma. Towards representation alignment and uniformity in collaborative filtering. In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining, pages 1816–1825, 2022. [34] T. Wang and P. Isola. Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In H. D. III and A. Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 9929–9939. PMLR, 13–18 Jul 2020. [35] W. Wang, Y. Xu, F. Feng, X. Lin, X. He, and T.-S. Chua. Diffusion recommender model. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 832–841, 2023. [36] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua. Neural graph collaborative filtering. In Proceedings of the 42nd international ACM SIGIR conference on Research and development in Information Retrieval, pages 165–174, 2019. [37] X. Wang, H. Jin, A. Zhang, X. He, T. Xu, and T.-S. Chua. Disentangled graph collaborative filtering. In Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval, pages 1001–1010, 2020. [38] J. Wu, X. Wang, F. Feng, X. He, L. Chen, J. Lian, and X. Xie. Self-supervised graph learning for recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’21, page 726–735, New York, NY, USA, 2021. Association for Computing Machinery. [39] J. Wu, X. Wang, X. Gao, J. Chen, H. Fu, and T. Qiu. On the effectiveness of sampled softmax loss for item recommendation. ACM Transactions on Information Systems, 42(4):1–26, 2024. [40] L. Wu, X. He, X. Wang, K. Zhang, and M. Wang. A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation. IEEE Transactions on Knowledge and Data Engineering, 35(5):4425–4445, 2022. [41] X. Wu, X. Dong, T. T. Nguyen, and A. T. Luu. Effective neural topic modeling with embedding clustering regularization. In Proceedings of the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages 37335–37357. PMLR, 23–29 Jul 2023. [42] X. Wu, L. Yang, J. Gong, C. Zhou, T. Lin, X. Liu, and P. S. Yu. Dimension independent mixup for hard negative sample in collaborative filtering. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, pages 2785–2794, 2023. [43] J. Xie, R. Girshick, and A. Farhadi. Unsupervised deep embedding for clustering analysis. In International conference on machine learning, pages 478–487. PMLR, 2016. [44] J. Yu, H. Yin, X. Xia, T. Chen, L. Cui, and Q. V. H. Nguyen. Are graph augmentations necessary? simple graph contrastive learning for recommendation. In Proceedings of the 45th international ACM SIGIR conference on research and development in information retrieval, pages 1294–1303, 2022. [45] W. Zhang, T. Chen, J. Wang, and Y. Yu. Optimizing top-n collaborative filtering via dynamic negative item sampling. In Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval, pages 785–788, 2013. [46] Y. Zhang, F. Feng, X. He, T. Wei, C. Song, G. Ling, and Y. Zhang. Causal intervention for leveraging popularity bias in recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’21, page 11–20, New York, NY, USA, 2021. Association for Computing Machinery. [47] W. X. Zhao, S. Mu, Y. Hou, Z. Lin, Y. Chen, X. Pan, K. Li, Y. Lu, H. Wang, C. Tian, Y. Min, Z. Feng, X. Fan, X. Chen, P. Wang, W. Ji, Y. Li, X. Wang, and J. Wen.Recbole: Towards a unified, comprehensive and efficient framework for recommendation algorithms. In CIKM, pages 4653–4664. ACM, 2021. [48] Y. Zheng, C. Gao, X. Li, X. He, Y. Li, and D. Jin. Disentangling user interest and conformity for recommendation with causal embedding. In Proceedings of the Web Conference 2021, WWW ’21, page 2980–2991, New York, NY, USA, 2021. Association for Computing Machinery. [49] C. Zhou, J. Ma, J. Zhang, J. Zhou, and H. Yang. Contrastive learning for debiased candidate generation in large-scale recommender systems. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, KDD’21, page 3985–3995, 2021. [50] X. Zhou, A. Sun, Y. Liu, J. Zhang, and C. Miao. Selfcf: A simple framework for self-supervised collaborative filtering. ACM Transactions on Recommender Systems, 1(2):1–25, 2023. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93477 | - |
dc.description.abstract | 協同過濾(CF)在推薦系統的進步中扮演著關鍵角色,通常涉及三個主要組成部分:編碼器、損失函數和負採樣。現有的研究往往強調設計複雜的編碼器來捕捉更高階的相似性,而忽略了損失函數的影響。在本文中,我們介紹了一種名為「中心點正則化」(CentReg)的新方法,旨在根據用戶和項目的潛在社群結構來調整嵌入向量的長度,進一步增強推薦效果。我們的研究首先發現了DirectAU在嵌入向量長度的潛在問題,然後設計出 CentReg,以正則化的方式輔助 DirectAU,且不與原先的最佳化目標互相衝突。我們對多個數據集進行的全面評估,突出了CentReg在推薦表現和計算效率方面,為對比性損失函數如 DirectAU 在 CF 任務上帶來的提升。 | zh_TW |
dc.description.abstract | Collaborative filtering (CF) is pivotal to the advancement of recommender systems, typically involving three key components: the encoder, loss function, and negative sampling. Existing research often emphasizes designing complex encoders to capture higher orders of proximity while overlooking the impact of the loss function. In this paper, we introduce Centroid Regularization (CentReg), a novel approach aimed at enhancing recommendations by adjusting embedding magnitudes in CF through the underlying community structures of users and items. Our study first identifies a potential issue with DirectAU related to embedding magnitudes and then designs a regularizer called CentReg to address this issue, without conflicting with the original optimization. Our comprehensive evaluation across multiple datasets highlights the recommendation performance and the training efficiency of CentReg in enhancing contrastive loss methods, such as DirectAU, for collaborative filtering tasks. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-01T16:19:52Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-01T16:19:52Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iv Abstract v Contents vi List of Figures ix List of Tables xi Chapter 1 Introduction 1 Chapter 2 Background 6 2.1 Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Latent Factor Models . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 Interaction Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.3 Negative Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 DirectAU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 Correlation between Embedding and Popularity . . . . . . . . . . . . 11 Chapter 3 Methodology 13 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Centroid Regularization (CentReg) . . . . . . . . . . . . . . . . . . 17 Chapter 4 Experiments 20 4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1.2 Competitive Methods . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.3 Evaluation Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3 Loss Function Comparison . . . . . . . . . . . . . . . . . . . . . . . 24 4.4 Efficiency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.5 The Application to SSM . . . . . . . . . . . . . . . . . . . . . . . . 26 4.6 The Conflict with LightGCN Encoders . . . . . . . . . . . . . . . . 27 4.7 Item Popularity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 28 4.8 Overlap Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.9 Parameter Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Chapter 5 Ablation Study 34 5.1 Impact of Clustering in Different Embedding Spaces . . . . . . . . . 34 5.2 Effectiveness of CentReg Applied to Different Targets . . . . . . . . 34 5.3 Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.4 Training Centroids Jointly with Encoders . . . . . . . . . . . . . . . 36 Chapter 6 Conclusion 38 References 40 | - |
dc.language.iso | en | - |
dc.title | 協同過濾的中心點正規化 | zh_TW |
dc.title | Centroid Regularization on DirectAU for Collaborative Filtering | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 鄭卜壬;彭文志;李政德 | zh_TW |
dc.contributor.oralexamcommittee | Pu-Jen Cheng;Wen-Chih Peng;Cheng-Te Li | en |
dc.subject.keyword | 推薦系統,協同過濾,表徵學習,集群, | zh_TW |
dc.subject.keyword | Recommender Systems,Collaborative Filtering,Representation Learning,Clustering, | en |
dc.relation.page | 47 | - |
dc.identifier.doi | 10.6342/NTU202402486 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-07-31 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 資訊工程學系 | - |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 4.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。