Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93403
標題: 基於時間序列窗口分治架構之虛擬量測模型及其可釋性分析
Development of a Virtual Metrology Model Based on Time Series Windowing Framework and Its Explainability Analysis
作者: 張茵茵
Yin-Yin Chang
指導教授: 藍俊宏
Jakey Blue
關鍵字: 虛擬量測,動態時間依賴性,圖神經網路,深度學習可解釋性,
Virtual Metrology,Dynamic Temporal Dependencies,Graph Neural Network,eXplainable AI (XAI),
出版年 : 2024
學位: 碩士
摘要: 隨著資訊技術與大數據分析概念逐漸普及,半導體製造業的製程控管發生了顯著變革。在當前APC (Advanced Process Control) 架構下,錯誤檢測與分類 (FDC, Fault Detection and Classification) 能即時檢測製程異常,減少不良品產生。然而全面檢測成本高昂,且耗時甚巨影響交期,因此虛擬量測 (VM, Virtual Metrology) 的功能被提出,用以即時預測和監控晶圓品質。然而半導體製程的複雜性和各階段的動態特性,使得從不平穩的時間序列資料中提取隱性特徵並提高模型預測準確度成為一項挑戰。過去研究主要依賴統計摘要特徵和手動擷取特徵 (hand-designed features) 的方法,難以全面捕捉非線性關係和複雜動態特性,限制對製程中複雜關係的理解。
本論文提出時間序列窗口分治的架構,期望針對製程中不同階段的資料進行個別分析,建立「基於加權虛擬量測模型」以及「基於長短期記憶虛擬量測模型」。兩模型的整體架構主要分為時間序列分治窗口與合併兩個部分,成功地提取各階段隱含的時間序列特徵,並透過圖結構訊息傳遞,分析變數在不同製程階段展現的動態交互作用關係。合併分治窗口特徵後,全面地提取資料中的重要模式和複雜的特徵關係。將驗證集置於測試集之前的方法,進一步強化模型對時間序列資料的特徵萃取能力,更有效地應對現實製程中的複雜情況。
本研究通過化學機械研磨 (Chemical-Mechanical Polishing, CMP) 製程公開資料集實證,並與基準模型進行比較,展示所提出的模型框架在窗口分治方面的效能。透過窗口權重和變數之間交互作用的深度分析,以及Deep SHAP深度學習可解釋性方法進行模型解釋性分析,提升對模型決策過程的理解和可靠性。
With the widespread adoption of information technology and big data analytics, there has been significant implementation in process control systems for the semiconductor manufacturing industry. Under the current Advanced Process Control (APC) framework, Fault Detection and Classification (FDC) can promptly identify process anomalies, thus reducing the production of defective products. Since thorough inspection is costly and time-consuming, greatly affecting delivery schedules, Virtual Metrology (VM) modeling has been proposed to predict and monitor wafer quality in real time. However, the complexity and the dynamics among operating stages in one process make it challenging to extract implicit features from the nonstationary time series data and enhance model prediction accuracy. Previous studies mainly relied on statistical summary features and hand-crafted features, which struggle to fully capture nonlinear relationships and complex dynamic characteristics, limiting the understanding of intricate relationships within the process.
This paper proposes a framework of time-series window partitioning, aiming to conduct individual analysis on data from different stages of the process, and establish "VM Model with Weighted Sum" and "VM Model with LSTM.” The overall structure of both models is mainly divided into time-series partitioning windows and merging sections, successfully extracting implicit time-series features from each stage and analyzing the dynamic interactions of variables across different process stages through graph structure information propagation. By merging partition window features, important patterns and complex feature relationships within the data are comprehensively extracted. The method of placing the validation set before the test set further strengthens the model's ability to extract features from time-series data and more effectively cope with the complexities of real-world processes.
This study is empirically validated using publicly available data sets from the Chemical-Mechanical Polishing (CMP) process and compared with benchmark models, demonstrating the performance of the proposed model framework in window partitioning. Through in-depth analysis of window weights and interactions among variables, as well as the model interpretability based on Deep SHAP algorithm, the understanding and reliability of the model decision-making process are enhanced.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93403
DOI: 10.6342/NTU202401901
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2024-07-18
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.82 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved