Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93403
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor藍俊宏zh_TW
dc.contributor.advisorJakey Blueen
dc.contributor.author張茵茵zh_TW
dc.contributor.authorYin-Yin Changen
dc.date.accessioned2024-07-31T16:09:14Z-
dc.date.available2024-08-01-
dc.date.copyright2024-07-31-
dc.date.issued2024-
dc.date.submitted2024-07-18-
dc.identifier.citationAl-Najjar, H. A., Pradhan, B., Beydoun, G., Sarkar, R., Park, H. J., & Alamri, A. (2023). A novel method using explainable artificial intelligence (XAI)-based Shapley Additive Explanations for spatial landslide prediction using Time-Series SAR dataset. Gondwana Research, 123, 107-124. https://doi.org/10.1016/j.gr.2022.08.004
Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K. R., & Samek, W. (2015). On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one, 10(7). https://doi.org/10.1371/journal.pone.0130140
Bhandari, M., Shahi, T. B., Siku, B., & Neupane, A. (2022). Explanatory classification of CXR images into COVID-19, Pneumonia and Tuberculosis using deep learning and XAI. Computers in Biology and Medicine, 150, 106156. https://doi.org/10.1016/j.compbiomed.2022.106156
Chen, H. Y., & Lee, C. H. (2020). Vibration signals analysis by explainable artificial intelligence (XAI) approach: Application on bearing faults diagnosis. IEEE Access, 8, 134246-134256. https://doi.org/10.1109/ACCESS.2020.3006491
Chen, J., Pi, D., Wu, Z., Zhao, X., Pan, Y., & Zhang, Q. (2021). Imbalanced satellite telemetry data anomaly detection model based on Bayesian LSTM. Acta Astronautica, 180, 232-242. https://doi.org/10.1016/j.actaastro.2020.12.012
Chien, C. F., Hsu, C. Y., & Chen, P. N. (2013). Semiconductor fault detection and classification for yield enhancement and manufacturing intelligence. Flexible Services and Manufacturing Journal, 25, 367-388. https://doi.org/10.1007/s10696-012-9161-4
Clain, R., Borodin, V., Juge, M., & Roussy, A. (2021). Virtual metrology for semiconductor manufacturing: Focus on transfer learning. In 2021 IEEE 17th International Conference on Automation Science and Engineering, 1621-1626. https://doi.org/10.1109/CASE49439.2021.9551567
Datta, D., Rai, H., Singh, S., Srivastava, M., Sharma, R. K., & Gosvami, N. N. (2022). Nanoscale tribological aspects of chemical mechanical polishing: A review. Applied Surface Science Advances, 11, 100286. https://doi.org/10.1016/j.apsadv.2022.100286
Di, Y., Jia, X., & Lee, J. (2017). Enhanced virtual metrology on chemical mechanical planarization process using an integrated model and data-driven approach. International Journal of Prognostics and Health Management, 8(2). https://doi.org/10.36001/ijphm.2017.v8i2.2641
Dreyfus, P. A., Psarommatis, F., May, G., & Kiritsis, D. (2022). Virtual metrology as an approach for product quality estimation in Industry 4.0: a systematic review and integrative conceptual framework. International Journal of Production Research, 60(2), 742-765. https://doi.org/10.1080/00207543.2021.1976433
Fan, S. K. S., Hsu, C. Y., Tsai, D. M., He, F., & Cheng, C. C. (2020). Data-driven approach for fault detection and diagnostic in semiconductor manufacturing. IEEE Transactions on Automation Science and Engineering, 17(4), 1925-1936. https://doi.org/10.1109/TASE.2020.2983061
Fu, E., Zhang, Y., Yang, F., & Wang, S. (2022). Temporal self-attention-based Conv-LSTM network for multivariate time series prediction. Neurocomputing, 501, 162-173. https://doi.org/10.1016/j.neucom.2022.06.014
Gramegna, A., & Giudici, P. (2020). Why to buy insurance? An explainable artificial intelligence approach. Risks, 8(4), 137. https://doi.org/10.3390/risks8040137
Gunning, D., & Aha, D. (2019). DARPA’s explainable artificial intelligence (XAI) program. AI magazine, 40(2), 44-58. https://doi.org/10.1609/aimag.v40i2.2850
He, Z., Xu, L., Yu, J., & Wu, X. (2024). Dynamic multi-fusion spatio-temporal graph neural network for multivariate time series forecasting. Expert Systems with Applications, 241, 122729. https://doi.org/10.1016/j.eswa.2023.122729
Hirano, K., Sato, T., & Suzuki, N. (2024). Real-time prediction of material removal rate for advanced process control of chemical mechanical polishing. CIRP Annals. https://doi.org/10.1016/j.cirp.2024.04.028
Hsu, C. Y., & Liu, W. C. (2021). Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in semiconductor manufacturing. Journal of Intelligent Manufacturing, 32(3), 823-836. https://doi.org/10.1007/s10845-020-01591-0
Hsu, C. Y., & Lu, Y. W. (2023). Virtual metrology of material removal rate using a one-dimensional convolutional neural network-based bidirectional long short-term memory network with attention. Computers & Industrial Engineering, 186, 109701. https://doi.org/10.1016/j.cie.2023.109701
Hu, J., & Zheng, W. (2020). Multistage attention network for multivariate time series prediction. Neurocomputing, 383, 122-137. https://doi.org/10.1016/j.neucom.2019.11.060
Jia, X., Di, Y., Feng, J., Yang, Q., Dai, H., & Lee, J. (2018). Adaptive virtual metrology for semiconductor chemical mechanical planarization process using GMDH-type polynomial neural networks. Journal of Process Control, 62, 44-54. https://doi.org/10.1016/j.jprocont.2017.12.004
Keleko, A. T., Kamsu-Foguem, B., Ngouna, R. H., & Tongne, A. (2023). Health condition monitoring of a complex hydraulic system using Deep Neural Network and DeepSHAP explainable XAI. Advances in Engineering Software, 175, 103339. https://doi.org/10.1016/j.advengsoft.2022.103339
Kim, E., Cho, S., Lee, B., & Cho, M. (2019). Fault detection and diagnosis using self-attentive convolutional neural networks for variable-length sensor data in semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, 32(3), 302-309. https://doi.org/10.1109/TSM.2019.2917521
Lee, K. B., & Kim, C. O. (2020). Recurrent feature-incorporated convolutional neural network for virtual metrology of the chemical mechanical planarization process. Journal of Intelligent Manufacturing, 31(1), 73-86. https://doi.org/10.1007/s10845-018-1437-4
Li, Z. L., Zhang, G. W., Yu, J., & Xu, L. Y. (2023). Dynamic graph structure learning for multivariate time series forecasting. Pattern Recognition, 138, 109423. https://doi.org/10.1016/j.patcog.2023.109423
Liu, K., Chen, Y., Zhang, T., Tian, S., & Zhang, X. (2018). A survey of run-to-run control for batch processes. ISA transactions, 83, 107-125. https://doi.org/10.1016/j.isatra.2018.09.005
Lu, H., Liu, Y., Fei, Z., & Guan, C. (2018). An outlier detection algorithm based on cross-correlation analysis for time series dataset. IEEE Access, 6, 53593-53610. https://doi.org/10.1109/ACCESS.2018.2870151
Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30.
Luo, J., Zhang, Z., Fu, Y., & Rao, F. (2021). Time series prediction of COVID-19 transmission in America using LSTM and XGBoost algorithms. Results in Physics, 27, 104462. https://doi.org/10.1016/j.rinp.2021.104462
Maggipinto, M., Terzi, M., Masiero, C., Beghi, A., & Susto, G. A. (2018). A computer vision-inspired deep learning architecture for virtual metrology modeling with 2-dimensional data. IEEE Transactions on Semiconductor Manufacturing, 31(3), 376-384. https://doi.org/10.1109/TSM.2018.2849206
Maitra, V., Su, Y., & Shi, J. (2024). Virtual Metrology in Semiconductor Manufacturing: Current Status and Future Prospects. Expert Systems with Applications, 123559. https://doi.org/10.1016/j.eswa.2024.123559
Pan, S. Y., Liao, Q., & Liang, Y. T. (2022). Multivariable sales prediction for filling stations via GA improved BiLSTM. Petroleum Science, 19(5), 2483-2496. https://doi.org/10.1016/j.petsci.2022.05.005
Park, C., Kim, Y., Park, Y., & Kim, S. B. (2018). Multitask learning for virtual metrology in semiconductor manufacturing systems. Computers & Industrial Engineering, 123, 209-219. https://doi.org/10.1016/j.cie.2018.06.024
PHM Society. (2016). PHM data challenge. Annual Conference of the Prognostics and Health Management Society. https://www.phmsociety.org/conference/phm/16/data-challenge/
Purwins, H., Barak, B., Nagi, A., Engel, R., Höckele, U., Kyek, A., ... & Weinzierl, K. (2013). Regression methods for virtual metrology of layer thickness in chemical vapor deposition. IEEE/ASME Transactions on Mechatronics, 19(1), 1-8. https://doi.org/10.1109/TMECH.2013.2273435
Qin, S. J., Cherry, G., Good, R., Wang, J., & Harrison, C. A. (2006). Semiconductor manufacturing process control and monitoring: A fab-wide framework. Journal of Process Control, 16(3), 179-191. https://doi.org/10.1016/j.jprocont.2005.06.002
Ren, H., Yuan, Q., Semba, S., Weng, T., Gu, C., & Yang, H. (2020). Pattern interdependent network of cross-correlation in multivariate time series. Physics Letters A, 384(30), 126781. https://doi.org/10.1016/j.physleta.2020.126781
Rostami, H., Blue, J., & Yugma, C. (2018). Automatic equipment fault fingerprint extraction for the fault diagnostic on the batch process data. Applied Soft Computing, 68, 972-989. https://doi.org/10.1016/j.asoc.2017.10.029
Ryo, M., Angelov, B., Mammola, S., Kass, J. M., Benito, B. M., & Hartig, F. (2021). Explainable artificial intelligence enhances the ecological interpretability of black‐box species distribution models. Ecography, 44(2), 199-205. https://doi.org/10.1111/ecog.05360
Saharkhizan, M., Azmoodeh, A., Dehghantanha, A., Choo, K. K. R., & Parizi, R. M. (2020). An ensemble of deep recurrent neural networks for detecting IoT cyber attacks using network traffic. IEEE Internet of Things Journal, 7(9), 8852-8859. https://doi.org/10.1109/JIOT.2020.2996425
Saleem, R., Yuan, B., Kurugollu, F., Anjum, A., & Liu, L. (2022). Explaining deep neural networks: A survey on the global interpretation methods. Neurocomputing, 513, 165-180. https://doi.org/10.1016/j.neucom.2022.09.129
Santos, O. L., Dotta, D., Wang, M., Chow, J. H., & Decker, I. C. (2022). Performance analysis of a DNN classifier for power system events using an interpretability method. International Journal of Electrical Power & Energy Systems, 136, 107594. https://doi.org/10.1016/j.ijepes.2021.107594
Saranya, A., & Subhashini, R. (2023). A systematic review of Explainable Artificial Intelligence models and applications: Recent developments and future trends. Decision analytics journal, 7. https://doi.org/10.1016/j.dajour.2023.100230
Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2019). The performance of LSTM and BiLSTM in forecasting time series. In 2019 IEEE International Conference on Big Data, 3285-3292. https://doi.org/10.1109/BigData47090.2019.9005997
Sun, K. H., Huh, H., Tama, B. A., Lee, S. Y., Jung, J. H., & Lee, S. (2020). Vision-based fault diagnostics using explainable deep learning with class activation maps. IEEE Access, 8, 129169-129179. https://doi.org/10.1109/ACCESS.2020.3009852
Suzuki, N., Yamaguchi, R., Hashimoto, Y., Yasuda, H., Yamaki, S., & Mochizuki, Y. (2022). Process state estimation in chemical mechanical polishing (CMP) by inverse analysis of in-process data. CIRP Annals, 71(1), 273-276. https://doi.org/10.1016/j.cirp.2022.04.060
Tang, M., Li, B., & Chen, H. (2023). Application of message passing neural networks for molecular property prediction. Current Opinion in Structural Biology, 81, 102616. https://doi.org/10.1016/j.sbi.2023.102616
Wan, J., & McLoone, S. (2017). Gaussian process regression for virtual metrology-enabled run-to-run control in semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, 31(1), 12-21. https://doi.org/10.1109/TSM.2017.2768241
Wang, P., Gao, R. X., & Yan, R. (2017). A deep learning-based approach to material removal rate prediction in polishing. CIRP annals, 66(1), 429-432. https://doi.org/10.1016/j.cirp.2017.04.013
Wu, X., & Shen, C. (2019). A new methodology for local cross-correlation between two nonstationary time series. Physical A: Statistical Mechanics and its Applications, 528, 121307. https://doi.org/10.1016/j.physa.2019.121307
Yugma, C., Blue, J., Dauzère-Pérès, S., & Obeid, A. (2015). Integration of scheduling and advanced process control in semiconductor manufacturing: review and outlook. Journal of Scheduling, 18, 195-205. https://doi.org/10.1007/s10951-014-0381-1
Zhai, N., Yao, P., & Zhou, X. (2020). Multivariate time series forecast in industrial process based on XGBoost and GRU. In 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC) (Vol. 9, pp. 1397-1400). IEEE. https://doi.org/10.1109/ITAIC49862.2020.9338878
Zhong, Z. W. (2020). Recent developments and applications of chemical mechanical polishing. The International Journal of Advanced Manufacturing Technology, 109(5), 1419-1430. https://doi.org/10.1007/s00170-020-05740-w
李冠德(2022)。單維轉二維卷積神經網路虛擬量測模型及其可釋性發展。[未發表碩士論文]。國立臺灣大學。https://doi.org/10.6342/NTU202202143
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93403-
dc.description.abstract隨著資訊技術與大數據分析概念逐漸普及,半導體製造業的製程控管發生了顯著變革。在當前APC (Advanced Process Control) 架構下,錯誤檢測與分類 (FDC, Fault Detection and Classification) 能即時檢測製程異常,減少不良品產生。然而全面檢測成本高昂,且耗時甚巨影響交期,因此虛擬量測 (VM, Virtual Metrology) 的功能被提出,用以即時預測和監控晶圓品質。然而半導體製程的複雜性和各階段的動態特性,使得從不平穩的時間序列資料中提取隱性特徵並提高模型預測準確度成為一項挑戰。過去研究主要依賴統計摘要特徵和手動擷取特徵 (hand-designed features) 的方法,難以全面捕捉非線性關係和複雜動態特性,限制對製程中複雜關係的理解。
本論文提出時間序列窗口分治的架構,期望針對製程中不同階段的資料進行個別分析,建立「基於加權虛擬量測模型」以及「基於長短期記憶虛擬量測模型」。兩模型的整體架構主要分為時間序列分治窗口與合併兩個部分,成功地提取各階段隱含的時間序列特徵,並透過圖結構訊息傳遞,分析變數在不同製程階段展現的動態交互作用關係。合併分治窗口特徵後,全面地提取資料中的重要模式和複雜的特徵關係。將驗證集置於測試集之前的方法,進一步強化模型對時間序列資料的特徵萃取能力,更有效地應對現實製程中的複雜情況。
本研究通過化學機械研磨 (Chemical-Mechanical Polishing, CMP) 製程公開資料集實證,並與基準模型進行比較,展示所提出的模型框架在窗口分治方面的效能。透過窗口權重和變數之間交互作用的深度分析,以及Deep SHAP深度學習可解釋性方法進行模型解釋性分析,提升對模型決策過程的理解和可靠性。
zh_TW
dc.description.abstractWith the widespread adoption of information technology and big data analytics, there has been significant implementation in process control systems for the semiconductor manufacturing industry. Under the current Advanced Process Control (APC) framework, Fault Detection and Classification (FDC) can promptly identify process anomalies, thus reducing the production of defective products. Since thorough inspection is costly and time-consuming, greatly affecting delivery schedules, Virtual Metrology (VM) modeling has been proposed to predict and monitor wafer quality in real time. However, the complexity and the dynamics among operating stages in one process make it challenging to extract implicit features from the nonstationary time series data and enhance model prediction accuracy. Previous studies mainly relied on statistical summary features and hand-crafted features, which struggle to fully capture nonlinear relationships and complex dynamic characteristics, limiting the understanding of intricate relationships within the process.
This paper proposes a framework of time-series window partitioning, aiming to conduct individual analysis on data from different stages of the process, and establish "VM Model with Weighted Sum" and "VM Model with LSTM.” The overall structure of both models is mainly divided into time-series partitioning windows and merging sections, successfully extracting implicit time-series features from each stage and analyzing the dynamic interactions of variables across different process stages through graph structure information propagation. By merging partition window features, important patterns and complex feature relationships within the data are comprehensively extracted. The method of placing the validation set before the test set further strengthens the model's ability to extract features from time-series data and more effectively cope with the complexities of real-world processes.
This study is empirically validated using publicly available data sets from the Chemical-Mechanical Polishing (CMP) process and compared with benchmark models, demonstrating the performance of the proposed model framework in window partitioning. Through in-depth analysis of window weights and interactions among variables, as well as the model interpretability based on Deep SHAP algorithm, the understanding and reliability of the model decision-making process are enhanced.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-31T16:09:14Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-31T16:09:14Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
Abstract ii
目次 iv
圖次 vi
表次 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 3
1.3 研究架構 5
第二章 文獻探討 6
2.1 先進製程控制 6
2.1.1 錯誤檢測與分類 7
2.1.2 虛擬量測模型 8
2.2 多變量時間序列預測 12
2.2.1 長短期記憶模型 12
2.2.2 注意力機制 13
2.2.3 圖神經網路 13
2.3 互相關函數 15
2.4 人工智慧可解釋性 17
2.4.1 Deep SHAP 19
第三章 研究方法 20
3.1 資料前處理 24
3.1.1 資料集切割 24
3.1.2 資料標準化 25
3.2 模型框架 26
3.2.1 圖結構初始化 27
3.2.2 基於加權虛擬量測模型 29
3.2.3 基於長短期記憶虛擬量測模型 35
3.3 解釋性推論 39
3.3.1 圖交互作用 39
3.3.2 Deep SHAP 40
第四章 案例研討 42
4.1 資料集說明 42
4.2 資料前處理 45
4.3 模型建立 50
4.3.1 圖結構初始值 50
4.3.2 基於加權虛擬量測模型 53
4.3.3 基於長短期記憶虛擬量測模型 54
4.4 模型效能評估 56
4.5 解釋性推論 62
4.5.1 子資料集A456 62
4.5.2 子資料集B456 64
第五章 結論與建議 67
5.1 研究結論 67
5.2 未來展望 69
參考文獻 70
附錄 A 子資料集A123與B456資料分布 76
附錄 B 子資料集A123解釋性推論 78
-
dc.language.isozh_TW-
dc.title基於時間序列窗口分治架構之虛擬量測模型及其可釋性分析zh_TW
dc.titleDevelopment of a Virtual Metrology Model Based on Time Series Windowing Framework and Its Explainability Analysisen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee洪子晏;許嘉裕zh_TW
dc.contributor.oralexamcommitteeTzu-Yen Hong;Chia-Yu Hsuen
dc.subject.keyword虛擬量測,動態時間依賴性,圖神經網路,深度學習可解釋性,zh_TW
dc.subject.keywordVirtual Metrology,Dynamic Temporal Dependencies,Graph Neural Network,eXplainable AI (XAI),en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202401901-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-18-
dc.contributor.author-college工學院-
dc.contributor.author-dept工業工程學研究所-
dc.date.embargo-lift2024-07-18-
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.82 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved