Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92483
標題: 應用非對稱位元率加碼與無絕熱干涉解碼穩定量子密鑰系統
Asymmetric bit-rate DPS protocol for stabilizing the interfered decoding in quantum key cryptography
作者: 林祐誠
You-Cheng Lin
指導教授: 林恭如
Gong-Ru Lin
關鍵字: 分佈回饋式雷射,差分相移量子密鑰分發,DFBLD線寬,馬赫曾德爾延遲干涉儀,單光子雪崩二極體,傳輸穩定性,提升DLI的FSR,被動絕熱控制系統,QKD解調,
distributed feedback laser diode,differential phase shift quantum key distribution (DPS-QKD),DFBLD linewidth,Mach-Zehnder delay line interferometer,single-photon avalanche diode,transmission stability,improvement to FSR of DLI,passive adiabatic control system,QKD demodulation,
出版年 : 2023
學位: 碩士
摘要: 隨著量子計算與量子電腦的發展,傳統通訊所使用的加密方式將會在短時間內被破解。因此,迫切需要具備高安全性的量子密鑰分發(QKD)進行防範。在醫療,金融和軍事等重要應用領域已逐步開始應用。面對未來的資訊戰與訊息戰,量子通訊的重要性將與日俱增。
QKD訊號透過強度與相位調製器產生並由分佈回饋式雷射(DFBLD)作為載波。為了維持高傳輸穩定性的差分相移量子密鑰分發(DPS-QKD)傳輸,必須確保載波具有低雜訊(±0.227% of △P/P) ,低長期功率擾動(±0.02% of △P/P) ,低波長擾動(±0.5 pm),以及低共振腔溫度擾動(±0.00105℃)和低偏置電流擾動(±5 μA) ,及較小的波長對電流和溫度的變化,分別為91.26 pm/℃ 和 1.31 pm/mA 。除此之外,296.6 kHz的窄線寬減少漏光所造成可見度下降。
此外,使用延遲1位元的延遲干涉儀(DLI)將相位鍵移(PSK)轉換為振幅鍵移(ASK),ASK-流經由兩台單光子雪崩二極體(SPAD)透過比對來篩選正確的密鑰。透過縮短DLI的兩臂差,使延遲位元時間減少,提高DPS-QKD的傳輸頻率,並且減少可見度變化來自於波長擾動,線寬,電流擾動和環境溫度擾動所造成的影響,提升穩定性。然而,高傳輸率將造成與單光子偵測頻率有所差異,因此使用非對稱邊碼/解碼的方案實行,確保高FSR DLI可被使用和實現高穩定性傳輸。使用兩臂差為5公尺,1.04公尺和0.2公尺的DLI作為解調器,其對應傳輸頻率為40-MHz,192-MHz和1-GHz,在QKD傳輸1000碼時,量子誤碼率(QBER)為3.41×10^-2,2.56×10^-2和2.2×10^-2,安全密鑰速率(SKR)為22.457 kbit/s,60.084 kbit/s和77.318 kbit/s。
因為環境溫度會使光纖折射率與光纖長度產生變化,因此使用低密度/高密度聚苯乙烯(LDPS/HDPS) 作為絕熱材料來包覆DLI,使其降低溫度變化所造成可見度的擾動。當使用LDPS作為絕熱控制材料時,室溫下每小時擾動0.59℃/小時,穩定時間為2.31分鐘。在QKD傳輸1000碼時,QBER為4.12×10^-2,SKR為0。當使用HDPS作為絕熱材料時,室溫下每小時擾動僅0.07 ℃/小時,穩定時間為10.1分鐘。在QKD傳輸1000碼時,QBER為3.41×10^-2,SKR為22.457 kbit/s。因為傳輸距離增加,導致SPAD接收到光子數減少,SPAD的雜訊將逐漸影響QBER。最終,在傳輸65公里時,QBER為3.57×10^-2,SKR為1.3 kbit/s。實現長距離與長碼型的穩定QKD傳輸。
With the development of quantum computing and quantum computers, the encryption methods used in traditional communications will be cracked quickly. Therefore, a highly secure quantum key distribution is urgently needed for prevention. It has gradually begun to be used in essential application fields such as medical, financial, and military. In the face of future information and message wars, the importance of quantum communications will increase daily.
The QKD signal is generated through intensity and phase modulators and uses a distributed feedback DFBLD (DFBLD) as a carrier. In order to maintain high transmission stability for differential phase-shift quantum key distribution (DPS-QKD) transmission, it is necessary to ensure that the carrier has low noise (±0.227% of△P/P) and low long-term power disturbance (±0.02% of△P/P), low wavelength perturbation (±0.5 pm), as well as low resonant cavity temperature perturbation (±0.00105℃) and low bias current perturbation (±5 μA), and smaller wavelength changes to current and temperature, respectively are 91.26 pm/℃ and 1.31 pm/mA. In addition, the narrow linewidth of 296.6 kHz reduces visibility loss caused by light leakage.
In addition, a delay interferometer (DLI) with a delay of 1 bit is used to convert the phase shift key (PSK) into an amplitude shift key (ASK). The ASK streams pass through two single-photon avalanche diodes (SPAD) to select the correct key through comparison. By shortening the difference between the two arms of DLI, the 1-bit delay time is reduced, the transmission frequency of DPS-QKD is increased, and the impact of visibility changes caused by wavelength disturbance, linewidth, current disturbance, and environmental temperature disturbance is reduced, improving stability. However, the high transmission rate will cause a difference from the single photon detection frequency, so an asymmetric encode/decoding scheme is used to ensure high transmission stability with high FSR DLI. Using DLI with two arm differences of 5 meters, 1.04 meters, and 0.2 meters as a demodulator, the corresponding transmission frequencies are 40-MHz, 192-MHz, and 1-GHz. When QKD transmits 1000 codes, the quantum error rate (QBER) is 3.41×10^-2, 2.56×10^-2 and 2.2×10^-2, and the security key rate (SKR) is 22.457 kbit/s, 60.084 kbit/s and 77.318 kbit/s.
Because the environmental temperature will change the fiber's refractive index and fiber length, low-density/high-density polystyrene (LDPS/HDPS) is used as an insulating material to cover the DLI and reduce the visibility disturbance caused by temperature fluctuations. When using LDPS as the thermal insulation control material, the per-hour disturbance at room temperature is 0.59°C/hour, and the stabilization time is 2.31 minutes. When QKD transmits 1000 codes, QBER is 4.12×10^-2 and SKR is 0. When HDPS is used as the thermal insulation material, the hourly disturbance at room temperature is only 0.07 °C/hour, and the stabilization time is 10.1 minutes. When QKD transmits 1000 codes, QBER is 3.41×10^-2, and SKR is 22.457 kbit/s. As the transmission distance increases, the number of photons received by SPAD decreases, and the noise of SPAD will gradually affect QBER. Finally, when transmitting 65 kilometers, the QBER is 3.57×10^-2, and the SKR is 1.3 kbit/s. Achieve stable QKD transmission over long distances and long code patterns.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92483
DOI: 10.6342/NTU202304400
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2026-12-31
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  目前未授權公開取用
3.01 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved