Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92483
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林恭如zh_TW
dc.contributor.advisorGong-Ru Linen
dc.contributor.author林祐誠zh_TW
dc.contributor.authorYou-Cheng Linen
dc.date.accessioned2024-03-26T16:15:39Z-
dc.date.available2024-03-27-
dc.date.copyright2024-03-26-
dc.date.issued2023-
dc.date.submitted2023-11-09-
dc.identifier.citation[1] Ahn, J., Kwon, H. Y., Ahn, B., Park, K., Kim, T., Lee, M. K., ... & Chung, J. (2022). Toward quantum secured distributed energy resources: Adoption of post-quantum cryptography (pqc) and quantum key distribution (qkd). Energies, 15(3), 714.
[2] Rudall, B. H. (1998). Quantum computing. Kybernetes, 27(4).
[3] Koashi, M. (2006, April). Unconditional security of quantum key distribution and the uncertainty principle. In Journal of Physics: Conference Series (Vol. 36, No. 1, p. 98). IOP Publishing.
[4] Bennett, C. H., & Brassard, G. (2014). Quantum cryptography: Public key distribution and coin tossing. Theoretical computer science, 560, 7-11.
[5] Ekert, A. K. (1991). Quantum cryptography based on Bell’s theorem. Physical review letters, 67(6), 661.
[6] Bennett, C. H., Brassard, G., & Mermin, N. D. (1992). Quantum cryptography without Bell’s theorem. Physical review letters, 68(5), 557.
[7] Hwang, W. Y. (2003). Quantum key distribution with high loss: toward global secure communication. Physical review letters, 91(5), 057901.
[8] Inoue, K., Waks, E., & Yamamoto, Y. (2003). Differential-phase-shift quantum key distribution using coherent light. Physical Review A, 68(2), 022317.
[9] Gobby, C., Yuan, A., & Shields, A. J. (2004). Quantum key distribution over 122 km of standard telecom fiber. Applied Physics Letters, 84(19), 3762-3764.
[10] Hadfield, R. H., Habif, J. L., Schlafer, J., Schwall, R. E., & Nam, S. W. (2006). Quantum key distribution at 1550nm with twin superconducting single-photon detectors. Applied physics letters, 89(24).
[11] Khan, M. M., Hyder, S., Pathan, M. K., & Sheikh, K. H. (2006, May). A Quantum key distribution network through single mode optical fiber. In International Symposium on Collaborative Technologies and Systems (CTS'06) (pp. 386-391). IEEE.
[12] Diamanti, E. (2006). Security and implementation of differential phase shift quantum key distribution systems. Stanford University.
[13] Zavriyev, A., Leverrier, A., Denchev, V., & Trifonov, A. (2007). Improving the performance of quantum key distribution apparatus. Journal of Modern Optics, 54(2-3), 305-313.
[14] Honjo, T., Inoue, T., & Inoue, K. (2011). Influence of light source linewidth in differential-phase-shift quantum key distribution systems. Optics Communications, 284(24), 5856-5859.
[15] Islam, N. T. (2018). High-rate, high-dimensional quantum key distribution systems. Springer.
[16] Sax, R., Boaron, A., Boso, G., Atzeni, S., Crespi, A., Grünenfelder, F., ... & Zbinden, H. (2023). High-speed integrated QKD system. Photonics Research, 11(6), 1007-1014.
[17] Gault, W. A., Johnston, S. F., & Kendall, D. J. (1985). Optimization of a field-widened Michelson interferometer. Applied optics, 24(11), 1604-1608.
[18] Chen, J., Wu, G., Xu, L., Gu, X., Wu, E., & Zeng, H. (2009). Stable quantum key distribution with active polarization control based on time-division multiplexing. New Journal of Physics, 11(6), 065004.
[19] Islam, N. T., Cahall, C., Aragoneses, A., Lezama, A., Kim, J., & Gauthier, D. J. (2017). Robust and stable delay interferometers with application to d-dimensional time-frequency quantum key distribution. Physical Review Applied, 7(4), 044010.
[20] Geng, W., Zhang, C., Zheng, Y., He, J., Zhou, C., & Kong, Y. (2019). Stable quantum key distribution using a silicon photonic transceiver. Optics Express, 27(20), 29045-29054.
[21] Cahall, C., Islam, N. T., Gauthier, D. J., & Kim, J. (2020). Multimode time-delay interferometer for free-space quantum communication. Physical Review Applied, 13(2), 024047.
[22] Bradley, C. C., Chen, J., & Hulet, R. G. (1990). Instrumentation for the stable operation of laser diodes. Review of scientific instruments, 61(8), 2097-2101.
[23] Honjo, T., Inoue, T., & Inoue, K. (2011). Influence of light source linewidth in differential-phase-shift quantum key distribution systems. Optics Communications, 284(24), 5856-5859.
[24] He, Y., Hu, S., Liang, S., & Li, Y. (2019). High-precision narrow laser linewidth measurement based on coherent envelope demodulation. Optical Fiber Technology, 50, 200-205.
[25] Yulianto, N., Widiyatmoko, B., & Priambodo, P. S. (2015). Temperature effect towards DFB laser wavelength on microwave generation based on two optical wave mixing. Int. J. Optoelectron. Eng, 5(2), 21-27.
[26] Funabashi, M., Nasu, H., Mukaihara, T., Kimoto, T., Shinagawa, T., Kise, T., ... & Kasukawa, A. (2004). Recent advances in DFB lasers for ultradense WDM applications. IEEE Journal of selected topics in quantum electronics, 10(2), 312-320.
[27] Muga, N. J., Ferreira, M. F., & Pinto, A. N. (2010). QBER estimation in QKD systems with polarization encoding. Journal of Lightwave Technology, 29(3), 355-361.
[28] Zhang, Q., Takesue, H., Honjo, T., Wen, K., Hirohata, T., Suyama, M., ... & Yamamoto, Y. (2009). Megabits secure key rate quantum key distribution. New Journal of Physics, 11(4), 045010.
[29] Diamanti, E., Takesue, H., Langrock, C., Fejer, M. M., & Yamamoto, Y. (2006). 100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors. Optics express, 14(26), 13073-13082.
[30] Snyder, A. W., & Young, W. R. (1978). Modes of optical waveguides. JOSA, 68(3), 297-309.
[31] Yuan, Z. L., Fröhlich, B., Lucamarini, M., Roberts, G. L., Dynes, J. F., & Shields, A. J. (2016). Directly phase-modulated light source. Physical Review X, 6(3), 031044.
[32] Shao, M., Qiao, X., Jiasurname, Z., Fusurname, H., Liu, Y., Li, H., & Zhao, X. (2015). Refractive index measurement based on fiber Bragg grating connected with a multimode fiber core. Optics Communications, 351, 70-74.
[33] Yuan, D., Dong, Y., Liu, Y., & Li, T. (2015). Mach-Zehnder interferometer biochemical sensor based on silicon-on-insulator rib waveguide with large cross section. Sensors, 15(9), 21500-21517.
[34] Zetie, K. P., Adams, S. F., & Tocknell, R. M. (2000). How does a Mach-Zehnder interferometer work?. Physics Education, 35(1), 46.
[35] Yuan, L. (1997). Effect of temperature and strain on fiber optic refractive index. Acta Optica Sinica, 17, 1713-1717.
[36] Liu, C., Zhang, S., Zhao, L., Chen, P., Fung, C. H., Chau, H. F., ... & Du, S. (2013). Differential-phase-shift quantum key distribution using heralded narrow-band single photons. Optics Express, 21(8), 9505-9513.
[37] Krylov, G. M., Fat’yanov, O. V., & Duplinskii, A. V. (2020). Influence of birefringent fibre joints on the visibility drift in a Mach–Zehnder interferometer. Quantum Electronics, 50(5), 447.
[38] Lin, Y., Du, W., Tu, D., Zhong, W., & Du, Q. (2005). Space charge distribution and crystalline structure in low density polyethylene (LDPE) blended with high density polyethylene (HDPE). Polymer international, 54(2), 465-470.
[39] Chaudhry, A. U., Mabrouk, A., & Abdala, A. (2020). Thermally enhanced pristine polyolefins: Fundamentals, progress and prospective. Journal of Materials Research and Technology, 9(5), 10796-10806.
[40] Paraïso, T. K., Woodward, R. I., Marangon, D. G., Lovic, V., Yuan, Z., & Shields, A. J. (2021). Advanced laser technology for quantum communications (tutorial review). Advanced Quantum Technologies, 4(10), 2100062.
[41] Tamaki, K., Koashi, M., & Kato, G. (2012). Unconditional security of coherent-state-based differential phase shift quantum key distribution protocol with block-wise phase randomization. arXiv preprint arXiv:1208.1995.
[42] Walenta, N., Burg, A., Caselunghe, D., Constantin, J., Gisin, N., Guinnard, O., ... & Zbinden, H. (2013). A fast and versatile QKD system with hardware key distillation and wavelength multiplexing. arXiv preprint arXiv:1309.2583.
[43] Honjo, T., Inoue, K., & Takahashi, H. (2004). Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach–Zehnder interferometer. Optics letters, 29(23), 2797-2799.
[44] Tanaka, A., Fujiwara, M., Nam, S. W., Nambu, Y., Takahashi, S., Maeda, W., ... & Tomita, A. (2008). Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization. Optics express, 16(15), 11354-11360.
[45] Shaw, G., Sridharan, S., Ranu, S., Shingala, F., Mandayam, P., & Prabhakar, A. (2022). Time-Bin Superposition Methods for DPS-QKD. IEEE Photonics Journal, 14(5), 1-7.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92483-
dc.description.abstract隨著量子計算與量子電腦的發展,傳統通訊所使用的加密方式將會在短時間內被破解。因此,迫切需要具備高安全性的量子密鑰分發(QKD)進行防範。在醫療,金融和軍事等重要應用領域已逐步開始應用。面對未來的資訊戰與訊息戰,量子通訊的重要性將與日俱增。
QKD訊號透過強度與相位調製器產生並由分佈回饋式雷射(DFBLD)作為載波。為了維持高傳輸穩定性的差分相移量子密鑰分發(DPS-QKD)傳輸,必須確保載波具有低雜訊(±0.227% of △P/P) ,低長期功率擾動(±0.02% of △P/P) ,低波長擾動(±0.5 pm),以及低共振腔溫度擾動(±0.00105℃)和低偏置電流擾動(±5 μA) ,及較小的波長對電流和溫度的變化,分別為91.26 pm/℃ 和 1.31 pm/mA 。除此之外,296.6 kHz的窄線寬減少漏光所造成可見度下降。
此外,使用延遲1位元的延遲干涉儀(DLI)將相位鍵移(PSK)轉換為振幅鍵移(ASK),ASK-流經由兩台單光子雪崩二極體(SPAD)透過比對來篩選正確的密鑰。透過縮短DLI的兩臂差,使延遲位元時間減少,提高DPS-QKD的傳輸頻率,並且減少可見度變化來自於波長擾動,線寬,電流擾動和環境溫度擾動所造成的影響,提升穩定性。然而,高傳輸率將造成與單光子偵測頻率有所差異,因此使用非對稱邊碼/解碼的方案實行,確保高FSR DLI可被使用和實現高穩定性傳輸。使用兩臂差為5公尺,1.04公尺和0.2公尺的DLI作為解調器,其對應傳輸頻率為40-MHz,192-MHz和1-GHz,在QKD傳輸1000碼時,量子誤碼率(QBER)為3.41×10^-2,2.56×10^-2和2.2×10^-2,安全密鑰速率(SKR)為22.457 kbit/s,60.084 kbit/s和77.318 kbit/s。
因為環境溫度會使光纖折射率與光纖長度產生變化,因此使用低密度/高密度聚苯乙烯(LDPS/HDPS) 作為絕熱材料來包覆DLI,使其降低溫度變化所造成可見度的擾動。當使用LDPS作為絕熱控制材料時,室溫下每小時擾動0.59℃/小時,穩定時間為2.31分鐘。在QKD傳輸1000碼時,QBER為4.12×10^-2,SKR為0。當使用HDPS作為絕熱材料時,室溫下每小時擾動僅0.07 ℃/小時,穩定時間為10.1分鐘。在QKD傳輸1000碼時,QBER為3.41×10^-2,SKR為22.457 kbit/s。因為傳輸距離增加,導致SPAD接收到光子數減少,SPAD的雜訊將逐漸影響QBER。最終,在傳輸65公里時,QBER為3.57×10^-2,SKR為1.3 kbit/s。實現長距離與長碼型的穩定QKD傳輸。
zh_TW
dc.description.abstractWith the development of quantum computing and quantum computers, the encryption methods used in traditional communications will be cracked quickly. Therefore, a highly secure quantum key distribution is urgently needed for prevention. It has gradually begun to be used in essential application fields such as medical, financial, and military. In the face of future information and message wars, the importance of quantum communications will increase daily.
The QKD signal is generated through intensity and phase modulators and uses a distributed feedback DFBLD (DFBLD) as a carrier. In order to maintain high transmission stability for differential phase-shift quantum key distribution (DPS-QKD) transmission, it is necessary to ensure that the carrier has low noise (±0.227% of△P/P) and low long-term power disturbance (±0.02% of△P/P), low wavelength perturbation (±0.5 pm), as well as low resonant cavity temperature perturbation (±0.00105℃) and low bias current perturbation (±5 μA), and smaller wavelength changes to current and temperature, respectively are 91.26 pm/℃ and 1.31 pm/mA. In addition, the narrow linewidth of 296.6 kHz reduces visibility loss caused by light leakage.
In addition, a delay interferometer (DLI) with a delay of 1 bit is used to convert the phase shift key (PSK) into an amplitude shift key (ASK). The ASK streams pass through two single-photon avalanche diodes (SPAD) to select the correct key through comparison. By shortening the difference between the two arms of DLI, the 1-bit delay time is reduced, the transmission frequency of DPS-QKD is increased, and the impact of visibility changes caused by wavelength disturbance, linewidth, current disturbance, and environmental temperature disturbance is reduced, improving stability. However, the high transmission rate will cause a difference from the single photon detection frequency, so an asymmetric encode/decoding scheme is used to ensure high transmission stability with high FSR DLI. Using DLI with two arm differences of 5 meters, 1.04 meters, and 0.2 meters as a demodulator, the corresponding transmission frequencies are 40-MHz, 192-MHz, and 1-GHz. When QKD transmits 1000 codes, the quantum error rate (QBER) is 3.41×10^-2, 2.56×10^-2 and 2.2×10^-2, and the security key rate (SKR) is 22.457 kbit/s, 60.084 kbit/s and 77.318 kbit/s.
Because the environmental temperature will change the fiber's refractive index and fiber length, low-density/high-density polystyrene (LDPS/HDPS) is used as an insulating material to cover the DLI and reduce the visibility disturbance caused by temperature fluctuations. When using LDPS as the thermal insulation control material, the per-hour disturbance at room temperature is 0.59°C/hour, and the stabilization time is 2.31 minutes. When QKD transmits 1000 codes, QBER is 4.12×10^-2 and SKR is 0. When HDPS is used as the thermal insulation material, the hourly disturbance at room temperature is only 0.07 °C/hour, and the stabilization time is 10.1 minutes. When QKD transmits 1000 codes, QBER is 3.41×10^-2, and SKR is 22.457 kbit/s. As the transmission distance increases, the number of photons received by SPAD decreases, and the noise of SPAD will gradually affect QBER. Finally, when transmitting 65 kilometers, the QBER is 3.57×10^-2, and the SKR is 1.3 kbit/s. Achieve stable QKD transmission over long distances and long code patterns.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-26T16:15:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-26T16:15:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 vi
ABSTRACT viii
CONTENTS x
LIST OF FIGURES xii
LIST OF TABLES xvi
Chapter 1 Introduction 1
1.1 Historical review of QKD application 1
1.1.1 The establishment and history of different QKD protocols 1
1.1.2 Study in FSR of DLI from other research team 2
1.1.3 Establishment of adiabatic systems from other research teams 4
1.2 Motivation 5
1.3 Thesis architecture 6
Chapter 2 Asymmetric Quantum Key Algorithm-Encoding for Stabilized Decoding with Short-delay Interferometer 8
2.1 Experimental setup of QKD 8
2.2 Low-noise DFBLD selection 10
2.3 In comparison to different 1-bit delay DLIs for stability 16
2.4 In comparison to DPS-QKD decoding with 40-MHz/192-MHz/1-GHz DLI 19
2.5 Summary 29
Chapter 3 Highly Stabilized QKD Transmission and QBER Minimization with Adiabatic System under DPS Protocol 32
3.1 Perturbation of DLI transfer equation 32
3.2 Experimental setup of long-distance QKD transmission 35
3.3 In comparison to the stability of different DLIs 38
3.4 Adiabatic control 45
3.5 In comparison to DPS-QKD with LDPS/HDPS adiabatic control 49
3.6 Summary 61
Chapter 4 Conclusion 64
REFERENCE 68
作者簡介 73
期刊論文與研討會論文投稿及發表紀錄 74
-
dc.language.isoen-
dc.title應用非對稱位元率加碼與無絕熱干涉解碼穩定量子密鑰系統zh_TW
dc.titleAsymmetric bit-rate DPS protocol for stabilizing the interfered decoding in quantum key cryptographyen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳育任;巫朝陽zh_TW
dc.contributor.oralexamcommitteeYuh-Renn Wu;Jau-Yang Wuen
dc.subject.keyword分佈回饋式雷射,差分相移量子密鑰分發,DFBLD線寬,馬赫曾德爾延遲干涉儀,單光子雪崩二極體,傳輸穩定性,提升DLI的FSR,被動絕熱控制系統,QKD解調,zh_TW
dc.subject.keyworddistributed feedback laser diode,differential phase shift quantum key distribution (DPS-QKD),DFBLD linewidth,Mach-Zehnder delay line interferometer,single-photon avalanche diode,transmission stability,improvement to FSR of DLI,passive adiabatic control system,QKD demodulation,en
dc.relation.page74-
dc.identifier.doi10.6342/NTU202304400-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-11-09-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2026-12-31-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  目前未授權公開取用
3.01 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved