請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89305
標題: | 結合機器學習與臨床指引之急性骨髓性白血病風險分層集成模型 An Ensemble Model for Acute Myeloid Leukemia Risk Stratification Recommendations by Combining Machine Learning with Clinical Guidelines |
作者: | 張名翔 Ming-Siang Chang |
指導教授: | 陳倩瑜 Chien-Yu Chen |
關鍵字: | 急性骨髓性白血病,集成模型,機器學習,風險分層,歐洲白血病網, acute myeloid leukemia,ensemble model,machine learning,risk stratification,European LeukemiaNet, |
出版年 : | 2023 |
學位: | 碩士 |
摘要: | 急性骨髓性白血病(Acute myeloid leukemia, AML)是一種致命的血液疾病,由異常白細胞引起並在骨髓中發展。它會導致血小板減少,增加出血和感染的可能性。本論文開發了一個機器學習集成(ensemble)模型,使用國立台灣大學附設醫院 1213 名 AML患者的數據集,對AML風險進行分層,本研究提出的方法結合機器學習集成模型預測的結果和2017年歐洲白血病網(European LeukemiaNet 2017, ELN 2017)預測的結果,進一步合成最終的集成模型Ensemble (ML+ELN),提出了初步的臨床風險分層建議。與ELN 2017臨床診斷建議相比,本研究的風險分層建議提供了最佳區分各種風險的能力,c-index 由0.64提升至0.66。特別在區分不利風險和中等風險上,相較於2017 ELN的p值(p-value)平均0.13,本研究的風險分層建議達到p值平均0.001的表現。 Acute myeloid leukemia (AML), a fatal blood condition, is brought on by abnormal white blood cells and develops in the bone marrow. It results in a decrease in platelets, raising the possibility of bleeding and infection. This study developed an ML-based ensemble model to stratify the risk of AML using a dataset containing 1213 AML patients from the National Taiwan University Hospital. Combining the ML-based ensemble model predictions and the European LeukemiaNet (ELN) 2017 predictions, the study represents a final ensemble model (ML+ELN) for initial clinical risk stratification recommendations. Compared to the clinical diagnostic recommendations ELN 2017, the proposed risk stratification proposal provides a superior capacity to distinguish various risks and improve the c-index from 0.64 to 0.66. Especially in distinguishing unfavorable risks from moderate risks, compared with the average p-value (p-value) of 0.13 in 2017 ELN, the proposed risk stratification proposal achieves excellent performance with an average p-value of 0.001. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89305 |
DOI: | 10.6342/NTU202303243 |
全文授權: | 同意授權(全球公開) |
電子全文公開日期: | 2025-01-07 |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 2.57 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。