Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89305
Title: 結合機器學習與臨床指引之急性骨髓性白血病風險分層集成模型
An Ensemble Model for Acute Myeloid Leukemia Risk Stratification Recommendations by Combining Machine Learning with Clinical Guidelines
Authors: 張名翔
Ming-Siang Chang
Advisor: 陳倩瑜
Chien-Yu Chen
Keyword: 急性骨髓性白血病,集成模型,機器學習,風險分層,歐洲白血病網,
acute myeloid leukemia,ensemble model,machine learning,risk stratification,European LeukemiaNet,
Publication Year : 2023
Degree: 碩士
Abstract: 急性骨髓性白血病(Acute myeloid leukemia, AML)是一種致命的血液疾病,由異常白細胞引起並在骨髓中發展。它會導致血小板減少,增加出血和感染的可能性。本論文開發了一個機器學習集成(ensemble)模型,使用國立台灣大學附設醫院 1213 名 AML患者的數據集,對AML風險進行分層,本研究提出的方法結合機器學習集成模型預測的結果和2017年歐洲白血病網(European LeukemiaNet 2017, ELN 2017)預測的結果,進一步合成最終的集成模型Ensemble (ML+ELN),提出了初步的臨床風險分層建議。與ELN 2017臨床診斷建議相比,本研究的風險分層建議提供了最佳區分各種風險的能力,c-index 由0.64提升至0.66。特別在區分不利風險和中等風險上,相較於2017 ELN的p值(p-value)平均0.13,本研究的風險分層建議達到p值平均0.001的表現。
Acute myeloid leukemia (AML), a fatal blood condition, is brought on by abnormal white blood cells and develops in the bone marrow. It results in a decrease in platelets, raising the possibility of bleeding and infection. This study developed an ML-based ensemble model to stratify the risk of AML using a dataset containing 1213 AML patients from the National Taiwan University Hospital. Combining the ML-based ensemble model predictions and the European LeukemiaNet (ELN) 2017 predictions, the study represents a final ensemble model (ML+ELN) for initial clinical risk stratification recommendations. Compared to the clinical diagnostic recommendations ELN 2017, the proposed risk stratification proposal provides a superior capacity to distinguish various risks and improve the c-index from 0.64 to 0.66. Especially in distinguishing unfavorable risks from moderate risks, compared with the average p-value (p-value) of 0.13 in 2017 ELN, the proposed risk stratification proposal achieves excellent performance with an average p-value of 0.001.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89305
DOI: 10.6342/NTU202303243
Fulltext Rights: 同意授權(全球公開)
metadata.dc.date.embargo-lift: 2025-01-07
Appears in Collections:生物機電工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf2.57 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved