請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88947
標題: | 基於深度學習之染色神經影像表皮層組織範圍分割 Epidermis Area Segmentation in Stained Nerve Images Based on Deep Learning |
作者: | 周宇玄 Yu-Xuan Chou |
指導教授: | 張恆華 Herng-Hua Chang |
關鍵字: | 深度學習,卷積神經網路,染色神經影像,影像分割, deep learning,convolutional neural network (CNN),stained nerve image,image segmentation, |
出版年 : | 2023 |
學位: | 碩士 |
摘要: | 神經系統是人類體內的重要系統,負責傳遞訊息、調節身體功能與維持內部平衡等重要生命運作功能。該系統可以分為兩個部分,分別為由脊椎神經與腦神 經構成之中樞神經系統,以及中樞神經系統以外的神經構成之周邊神經系統。其中周邊神經系統之病變通常會藉由染色神經影像進行診斷,唯診斷時使用人工分 割表皮層組織範圍需要耗費大量人工成本。本研究提出一種基於深度學習自動分割神經影像中表皮層組織範圍之模型,其由不同深度的U型網路以及多尺度模塊所構成,並且提出相應之前處理演算法,輔助本研究提出模型之驗證,以有效進行訓練與測試。本研究所提出之模型架構經過訓練後的預測表皮層組織範圍成效,可以在測試資料集展現優異之分割結果,並在Dice指標顯示具有92.80%之分割準確度。 The nervous system is an important system for the living body, responsible for transmitting information, regulating body functions, and maintaining internal balance and other important life functions. The system can be divided into two parts: the central nervous system composed of the spinal nerves and cranial nerves and the peripheral nervous system (PNS) composed of nerves other than the central nervous system. Among them, the diseases of the PNS are usually diagnosed by stained nerve images. But the segmentation of the epidermis area in the images requires a lot of labor costs. This thesis proposes a model based on deep learning to automatically segment the epidermis area in stained nerve images. The model is composed of U-shaped networks of different depths and multi-scale modules. We also propose pre-processing algorithms to facilitate the training and testing of the proposed model. The model architecture proposed in this study to predict the epidermis area shows excellent segmentation results with the Dice index indicating segmentation accuracy of 92.80%. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88947 |
DOI: | 10.6342/NTU202303041 |
全文授權: | 未授權 |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 2.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。