Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88947
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張恆華zh_TW
dc.contributor.advisorHerng-Hua Changen
dc.contributor.author周宇玄zh_TW
dc.contributor.authorYu-Xuan Chouen
dc.date.accessioned2023-08-16T16:29:04Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citation[1] E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. Siegelbaum, A. J. Hudspeth, and S. Mack, Principles of neural science. McGraw-hill New York, 2000.
[2] A. Çakar, H. Durmuş-Tekçe, and Y. Parman, "Familial Amyloid Polyneuropathy," (in eng), Noro Psikiyatr Ars, vol. 56, no. 2, pp. 150-156, Jun 2019.
[3] P. N. Taylor et al., "Global epidemiology of hyperthyroidism and hypothyroidism," Nature Reviews Endocrinology, vol. 14, no. 5, pp. 301-316, 2018.
[4] G. S. Eisenbarth, "Type I diabetes mellitus," New England journal of medicine, vol. 314, no. 21, pp. 1360-1368, 1986.
[5] F. Rosenblatt, "The perceptron: a probabilistic model for information storage and organization in the brain," Psychological review, vol. 65, no. 6, p. 386, 1958.
[6] P. Werbos, "Beyond regression: New tools for prediction and analysis in the behavioral sciences," PhD thesis, Committee on Applied Mathematics, Harvard University, Cambridge, MA, 1974.
[7] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, "A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects," (in eng), IEEE Trans Neural Netw Learn Syst, vol. 33, no. 12, pp. 6999-7019, Dec 2022.
[8] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning internal representations by error propagation," 1986.
[9] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath, "Generative Adversarial Networks: An Overview," IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 53-65, 2018.
[10] S. Dodge and L. Karam, "A study and comparison of human and deep learning recognition performance under visual distortions," in 2017 26th international conference on computer communication and networks (ICCCN), 2017: IEEE, pp. 1-7.
[11] W. S. McCulloch and W. Pitts, "A logical calculus of the ideas immanent in nervous activity," The bulletin of mathematical biophysics, vol. 5, pp. 115-133, 1943.
[12] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," Nature, vol. 323, no. 6088, pp. 533-536, 1986.
[13] R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H. S. Seung, "Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit," Nature, vol. 405, no. 6789, pp. 947-951, 2000.
[14] A. L. Maas, A. Y. Hannun, and A. Y. Ng, "Rectifier nonlinearities improve neural network acoustic models," in Proc. icml, 2013, vol. 30, no. 1: Atlanta, Georgia, USA, p. 3.
[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
[16] A. L. Samuel, "Some studies in machine learning using the game of checkers," IBM Journal of research and development, vol. 3, no. 3, pp. 210-229, 1959.
[17] L. R. Dice, "Measures of the amount of ecologic association between species," Ecology, vol. 26, no. 3, pp. 297-302, 1945.
[18] H. Robbins and S. Monro, "A stochastic approximation method," The annals of mathematical statistics, pp. 400-407, 1951.
[19] B. T. Polyak, "Some methods of speeding up the convergence of iteration methods," Ussr computational mathematics and mathematical physics, vol. 4, no. 5, pp. 1-17, 1964.
[20] G. Hinton, N. Srivastava, and K. Swersky, "Neural networks for machine learning," Coursera, video lectures, vol. 264, no. 1, pp. 2146-2153, 2012.
[21] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980, 2014.
[22] K. Fukushima, "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position," Biological cybernetics, vol. 36, no. 4, pp. 193-202, 1980.
[23] Y. LeCun et al., "Backpropagation applied to handwritten zip code recognition," Neural computation, vol. 1, no. 4, pp. 541-551, 1989.
[24] J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431-3440.
[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," Communications of the ACM, vol. 60, no. 6, pp. 84-90, 2017.
[26] M. Yani, "Application of transfer learning using convolutional neural network method for early detection of terry’s nail," in Journal of Physics: Conference Series, 2019, vol. 1201, no. 1: IOP Publishing, p. 012052.
[27] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, 2015: Springer, pp. 234-241.
[28] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," in International conference on machine learning, 2015: pmlr, pp. 448-456.
[29] Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang, "Unet++: A nested u-net architecture for medical image segmentation," in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4, 2018: Springer, pp. 3-11.
[30] F. Isensee, P. F. Jaeger, S. A. Kohl, J. Petersen, and K. H. Maier-Hein, "nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation," Nature methods, vol. 18, no. 2, pp. 203-211, 2021.
[31] R. Su, D. Zhang, J. Liu, and C. Cheng, "MSU-Net: Multi-Scale U-Net for 2D Medical Image Segmentation," (in eng), Front Genet, vol. 12, p. 639930, 2021,
[32] J. Liu et al., "MU-Net: An efficient algorithm for foreign objects detection in electric equipment," presented at the Proceedings of the 8th International Conference on Computing and Artificial Intelligence, Tianjin, China, 2022.
[33] E. J. Kirkland and E. J. Kirkland, "Bilinear interpolation," Advanced Computing in Electron Microscopy, pp. 261-263, 2010.
[34] L. Brigato and L. Iocchi, "A close look at deep learning with small data," in 2020 25th International Conference on Pattern Recognition (ICPR), 2021: IEEE, pp. 2490-2497.
[35] F. Yu and V. Koltun, "Multi-scale context aggregation by dilated convolutions," arXiv preprint arXiv:1511.07122, 2015.
[36] N. Bjorck, C. P. Gomes, B. Selman, and K. Q. Weinberger, "Understanding batch normalization," Advances in neural information processing systems, vol. 31, 2018.
[37] K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification," in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1026-1034.
[38] Q. Ren, M. Li, and S. Han, "Tectonic discrimination of olivine in basalt using data mining techniques based on major elements: a comparative study from multiple perspectives," Big Earth Data, vol. 3, no. 1, pp. 8-25, 2019.
[39] "NVIDIA RTX A6000." https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/proviz-print-nvidia-rtx-a6000-datasheet-us-nvidia-1454980-r9-web%20
[40] G. Van Rossum and F. L. Drake Jr, Python tutorial. Centrum voor Wiskunde en Informatica Amsterdam, The Netherlands, 1995.
[41] A. Paszke et al., "Pytorch: An imperative style, high-performance deep learning library," Advances in neural information processing systems, vol. 32, 2019.
[42] H.-H. Chang, A. H. Zhuang, D. J. Valentino, and W.-C. Chu, "Performance measure characterization for evaluating neuroimage segmentation algorithms," Neuroimage, vol. 47, no. 1, pp. 122-135, 2009.
[43] P. Jaccard, "THE DISTRIBUTION OF THE FLORA IN THE ALPINE ZONE," New Phytologist, Article vol. 11, no. 2, pp. 37-50, 1912, doi: 10.1111/j.1469-8137.1912.tb05611.x.
[44] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, "Comparing images using the Hausdorff distance," IEEE Transactions on pattern analysis and machine intelligence, vol. 15, no. 9, pp. 850-863, 1993.
[45] Student, "The probable error of a mean," Biometrika, vol. 6, no. 1, pp. 1-25, 1908.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88947-
dc.description.abstract神經系統是人類體內的重要系統,負責傳遞訊息、調節身體功能與維持內部平衡等重要生命運作功能。該系統可以分為兩個部分,分別為由脊椎神經與腦神 經構成之中樞神經系統,以及中樞神經系統以外的神經構成之周邊神經系統。其中周邊神經系統之病變通常會藉由染色神經影像進行診斷,唯診斷時使用人工分 割表皮層組織範圍需要耗費大量人工成本。本研究提出一種基於深度學習自動分割神經影像中表皮層組織範圍之模型,其由不同深度的U型網路以及多尺度模塊所構成,並且提出相應之前處理演算法,輔助本研究提出模型之驗證,以有效進行訓練與測試。本研究所提出之模型架構經過訓練後的預測表皮層組織範圍成效,可以在測試資料集展現優異之分割結果,並在Dice指標顯示具有92.80%之分割準確度。zh_TW
dc.description.abstractThe nervous system is an important system for the living body, responsible for transmitting information, regulating body functions, and maintaining internal balance and other important life functions. The system can be divided into two parts: the central nervous system composed of the spinal nerves and cranial nerves and the peripheral nervous system (PNS) composed of nerves other than the central nervous system. Among them, the diseases of the PNS are usually diagnosed by stained nerve images. But the segmentation of the epidermis area in the images requires a lot of labor costs. This thesis proposes a model based on deep learning to automatically segment the epidermis area in stained nerve images. The model is composed of U-shaped networks of different depths and multi-scale modules. We also propose pre-processing algorithms to facilitate the training and testing of the proposed model. The model architecture proposed in this study to predict the epidermis area shows excellent segmentation results with the Dice index indicating segmentation accuracy of 92.80%.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:29:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T16:29:04Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
第 1 章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 2
1.4 論文架構 3
第 2 章 文獻探討 4
2.1 類神經網路 4
2.1.1 神經元 4
2.1.2 激勵函數 5
2.2 類神經網路訓練 8
2.2.1 損失函數 8
2.2.2 優化器 10
2.2.3 反向傳播 11
2.3 卷積神經網路 11
2.4 全卷積網路 12
2.5 U-Net 14
2.6 U-Net相關架構 15
2.6.1 U-Net++ 15
2.6.2 nnU-Net 16
2.6.3 MSU-Net 16
2.6.4 MU-Net 17
第 3 章 研究設計與方法 19
3.1 方法流程 19
3.2 影像前處理 19
3.2.1 取得表皮層組織範圍中心線 20
3.2.2 測量區塊大小及切割區塊 21
3.3 卷積神經網路架構 25
3.3.1 研究網路架構 25
3.3.2 網路架構訓練 28
3.4 影像後處理 28
第 4 章 實驗結果及討論 30
4.1 染色神經切片資料集 30
4.2 網路模型訓練架構 31
4.2.1 實驗環境 31
4.2.2 訓練模型參數 32
4.3 網路訓練評估方法 33
4.4 表皮層組織區域分割結果 35
4.4.1 模型參數分析 35
4.4.2 模型預測結果 37
4.4.3 其他方法預測結果比較 42
第 5 章 結論及未來展望 48
5.1 結論 48
5.2 未來展望 48
參考文獻 50
-
dc.language.isozh_TW-
dc.title基於深度學習之染色神經影像表皮層組織範圍分割zh_TW
dc.titleEpidermis Area Segmentation in Stained Nerve Images Based on Deep Learningen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee丁肇隆;張瑞益;江明彰zh_TW
dc.contributor.oralexamcommitteeChao-Lung Ting;Ray-I Chang;Ming-Chang Chiangen
dc.subject.keyword深度學習,卷積神經網路,染色神經影像,影像分割,zh_TW
dc.subject.keyworddeep learning,convolutional neural network (CNN),stained nerve image,image segmentation,en
dc.relation.page53-
dc.identifier.doi10.6342/NTU202303041-
dc.rights.note未授權-
dc.date.accepted2023-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
2.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved