Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78538
Title: 利用多輸入神經網路及蒙地卡羅組織模型定量中央靜脈血氧飽和度
Quantifying the Central Venous Oxygen Saturation via Multiple Input Neural Network and Monte Carlo Tissue Model
Authors: 塗是澂
Shih-Cheng Tu
Advisor: 宋孔彬
Kung-Bin Sung
Keyword: 漫反射光譜,近紅外光譜,內頸靜脈,血氧飽和濃度,蒙地卡羅演算法,類神經網路,基因演算法,
Diffuse reflectance spectroscopy,Near-infrared spectroscopy,Internal jugular vein,Oxygen saturation,Monte Carlo,Artificial neural network,Genetic algorithm,
Publication Year : 2019
Degree: 碩士
Abstract: 本研究將重點集中在以非侵入性的光學方法,透過內頸靜脈(internal jugular vein, IJV)定量中央靜脈血氧飽和濃度(central venous oxygen saturation,ScvO2)。在實驗中,我們透過近紅外光作為光源將光束入射受試者之頸部組織,可以量測受試者組織之漫反射光譜(diffuse reflectance spectrum, DRS)。
另一方面,為了將量測之光譜予以分析,本研究基於蒙地卡羅演算法,開發IJV組織之模型,並以活體光譜佐以驗證其正確性,同時決定組織模型中數個重要參數,包括其幾何結構、光學係數、以及吸收物質組成。以組織模型為核心,產生大量蒙地卡羅的模擬資料以訓練類神經網路,加速模擬之速度,並再最後利用基因演算法來達成光譜的逆向擬合。以此架構開發出一套功能完整的分析模型。利用該模型有效地分析光譜,定量出組織的血氧飽和度。最後,測試該模型在不同組織預測之表現,並以組織仿體來驗證及估計其誤差及正確性。
In this study, the goal is to noninvasively quantify the oxygen saturation of central venous on the site of internal jugular vein. A near-infrared light source is employed in order to acquire the diffuse reflectance spectrum from the neck of healthy volunteers.

For the sake of interpret the spectrum correctly, an IJV tissue model is needed. According to that, a Monte Carlo based tissue model is built and validated by comparing it with in vivo spectrum. The geometry parameters, optical parameters, and the compositions of the tissue model are determined in this process.

Once the tissue model is validated and feasible for depicting the natural of IJV tissue, it is utilized to generate simulated data for training an artificial neural network, which can accelerate the simulation process dramatically. Finally, genetic algorithm act as the last component of the pipeline, the inverse model, optimizing the similarity between the simulated spectrum and the measured one’s, extracting the physiological parameters such as oxygen saturation. The full process is then tested on different volunteer, and a tissue phantom is used to estimate the precision of the inverse model.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78538
DOI: 10.6342/NTU201903877
Fulltext Rights: 未授權
metadata.dc.date.embargo-lift: 2024-08-26
Appears in Collections:生醫電子與資訊學研究所

Files in This Item:
File SizeFormat 
ntu-107-2.pdf
  Restricted Access
5.86 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved