請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78538
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 宋孔彬 | zh_TW |
dc.contributor.advisor | Kung-Bin Sung | en |
dc.contributor.author | 塗是澂 | zh_TW |
dc.contributor.author | Shih-Cheng Tu | en |
dc.date.accessioned | 2021-07-11T15:02:44Z | - |
dc.date.available | 2024-08-20 | - |
dc.date.copyright | 2019-08-26 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 1. Fabbro, S., et al., An application of deep learning in the analysis of stellar spectra. Monthly Notices of the Royal Astronomical Society, 2017. 475(3): p. 2978-2993.
2. Földes-Papp, Z., U. Demel, and G.P. Tilz, Laser scanning confocal fluorescence microscopy: an overview. International Immunopharmacology, 2003. 3(13): p. 1715-1729. 3. Bezerra, H.G., et al., Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC. Cardiovascular interventions, 2009. 2(11): p. 1035-1046. 4. Chang, S.K., et al., Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia. J Biomed Opt, 2006. 11(2): p. 024008. 5. Gade, J., et al., Diffuse reflectance spectrophotometry with visible light: comparison of four different methods in a tissue phantom. Physics in Medicine & Biology, 2005. 51(1): p. 121. 6. C. Chu, S., et al., Monte Carlo simulation of the fluorescence spectra of colon and cervical tissues at different dysplasia grades. 2005. 283-292. 7. Devi, S., P.K. Panigrahi, and A. Pradhan, Detecting cervical cancer progression through extracted intrinsic fluorescence and principal component analysis. Journal of Biomedical Optics, 2014. 19(12): p. 1-9, 9. 8. Levitzky, M.G., Chapter 7. Transport of Oxygen and Carbon Dioxide in the Blood, in Pulmonary Physiology, 8e. 2013, The McGraw-Hill Companies: New York, NY. 9. McGee, D.C. and M.K. Gould, Preventing Complications of Central Venous Catheterization. New England Journal of Medicine, 2003. 348(12): p. 1123-1133. 10. Jacques, S., Optical Properties of Biological Tissues: A Review. Vol. 58. 2013. R37-R61. 11. Lin, B., et al., Anatomical variation of the internal jugular vein and its impact on temporary haemodialysis vascular access: An ultrasonographic survey in uraemic patients. Vol. 13. 1998. 134-8. 12. Turba, U.C., et al., Anatomic relationship of the internal jugular vein and the common carotid artery applied to percutaneous transjugular procedures. Cardiovasc Intervent Radiol, 2005. 28(3): p. 303-6. 13. Palmer, K.F. and D. Williams, Optical properties of water in the near infrared*. Journal of the Optical Society of America, 1974. 64(8): p. 1107-1110. 14. Jacques, S.L., R.D. Glickman, and J.A. Schwartz, Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium. Photonics West '96. Vol. 2681. 1996: SPIE. 15. van Veen, R.L.P., et al. Determination of VIS- NIR absorption coefficients of mammalian fat, with time- and spatially resolved diffuse reflectance and transmission spectroscopy. in Biomedical Topical Meeting. 2004. Miami Beach, Florida: Optical Society of America. 16. Moaveni, M.K., A Multiple Scattering Field-theory Applied to Whole Blood. 1970: University of Washington. 17. Schmitt, J.M., Optical Measurement of Blood Oxygen by Implantable Telemetry. 1986: Stanford University. 18. Sekar, S.K., et al., Diffuse optical characterization of collagen absorption from 500 to 1700 nm. J Biomed Opt, 2017. 22(1): p. 15006. 19. Encyclopedia of Survey Research Methods. 2008. 20. Zhu, C. and Q. Liu, Review of Monte Carlo modeling of light transport in tissues. Journal of Biomedical Optics, 2013. 18(5): p. 1-13, 13. 21. Fang, Q. and D.A. Boas, Monte Carlo Simulation of Photon Migration in 3D Turbid Media Accelerated by Graphics Processing Units. Optics Express, 2009. 17(22): p. 20178-20190. 22. Wang, L., S.L. Jacques, and L. Zheng, MCML—Monte Carlo modeling of light transport in multi-layered tissues. Computer Methods and Programs in Biomedicine, 1995. 47(2): p. 131-146. 23. Henyey, L.G. and J.L. Greenstein, Diffuse radiation in the Galaxy. Vol. 3. 1941. 117-137. 24. Alerstam, E., S. Andersson-Engels, and T. Svensson, White Monte Carlo for time-resolved photon migration. Journal of Biomedical Optics, 2008. 13(4): p. 1-10, 10. 25. Bishop, C.M., Neural Networks for Pattern Recognition. 1995: Oxford University Press, Inc. 482. 26. Kuonen, D., Data Mining and Statistics: What is the Connection? 2004. 27. Wu, H., Global stability analysis of a general class of discontinuous neural networks with linear growth activation functions. Information Sciences, 2009. 179(19): p. 3432-3441. 28. BARZILAI, J. and J.M. BORWEIN, Two-Point Step Size Gradient Methods. IMA Journal of Numerical Analysis, 1988. 8(1): p. 141-148. 29. Mitchell, M., An Introduction to Genetic Algorithms. 1998: MIT Press. 209. 30. Sorensen, H., et al., Extra-cerebral oxygenation influence on near-infrared-spectroscopy-determined frontal lobe oxygenation in healthy volunteers: a comparison between INVOS-4100 and NIRO-200NX. Clin Physiol Funct Imaging, 2015. 35(3): p. 177-84. 31. Huang, N., et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Vol. 454. 1998. 903-995. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78538 | - |
dc.description.abstract | 本研究將重點集中在以非侵入性的光學方法,透過內頸靜脈(internal jugular vein, IJV)定量中央靜脈血氧飽和濃度(central venous oxygen saturation,ScvO2)。在實驗中,我們透過近紅外光作為光源將光束入射受試者之頸部組織,可以量測受試者組織之漫反射光譜(diffuse reflectance spectrum, DRS)。
另一方面,為了將量測之光譜予以分析,本研究基於蒙地卡羅演算法,開發IJV組織之模型,並以活體光譜佐以驗證其正確性,同時決定組織模型中數個重要參數,包括其幾何結構、光學係數、以及吸收物質組成。以組織模型為核心,產生大量蒙地卡羅的模擬資料以訓練類神經網路,加速模擬之速度,並再最後利用基因演算法來達成光譜的逆向擬合。以此架構開發出一套功能完整的分析模型。利用該模型有效地分析光譜,定量出組織的血氧飽和度。最後,測試該模型在不同組織預測之表現,並以組織仿體來驗證及估計其誤差及正確性。 | zh_TW |
dc.description.abstract | In this study, the goal is to noninvasively quantify the oxygen saturation of central venous on the site of internal jugular vein. A near-infrared light source is employed in order to acquire the diffuse reflectance spectrum from the neck of healthy volunteers.
For the sake of interpret the spectrum correctly, an IJV tissue model is needed. According to that, a Monte Carlo based tissue model is built and validated by comparing it with in vivo spectrum. The geometry parameters, optical parameters, and the compositions of the tissue model are determined in this process. Once the tissue model is validated and feasible for depicting the natural of IJV tissue, it is utilized to generate simulated data for training an artificial neural network, which can accelerate the simulation process dramatically. Finally, genetic algorithm act as the last component of the pipeline, the inverse model, optimizing the similarity between the simulated spectrum and the measured one’s, extracting the physiological parameters such as oxygen saturation. The full process is then tested on different volunteer, and a tissue phantom is used to estimate the precision of the inverse model. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:02:44Z (GMT). No. of bitstreams: 1 ntu-108-R06945033-1.pdf: 6000301 bytes, checksum: 1b5246dd019537bfc681971a53212782 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝 1
中文摘要 3 Abstract 4 圖目錄 8 表格目錄 11 1. 緒論 12 1.1前言 12 1.2研究動機 13 1.3研究問題 14 2. 理論介紹 16 2.1頸部組織結構 16 2.2漫反射原理 20 2.3 蒙地卡羅演算法 20 2.3.1 Monte Carlo演算法在光學系統中之應用 21 2.3.2 White Monte Carlo演算法 27 2.4類神經網路模型 30 2.4.1 基本原理 30 2.4.2損失函數與梯度下降法 31 2.4.3 類神經網路在本研究中之應用 33 2.5基因演算法 33 2.5.1 基本原理 33 2.5.2 基因演算法在本研究中的應用 34 3. 組織模型初步驗證 36 3.1 目的 36 3.2 流程及活體量測 36 3.3 吸收係數擬合 37 4. 活體實驗 40 4.1研究流程與架構 40 4.2影像光譜系統與探頭設計 42 4.3原始光譜訊號之預處理 43 4.4光學系統之響應校正流程 44 4.5 順向——類神經網路 45 4.6逆向——基因演算法 46 4.7內頸靜脈量測實驗流程 49 4.7.1 過度換氣 49 4.7.2 吸氧 49 4.8組織仿體 49 5. 實驗結果與討論 52 5.1活體數據分析 52 5.1.1 活體原始光譜之訊號處理 54 5.1.3活體原始光譜分析 – 吸氧氣 60 5.2 模型訓練分析 63 5.3 訓練資料穩定性之分析 66 5.4 擬合結果分析 70 5.4.1正常狀況 71 5.4.2過度換氣 72 5.4.3 吸入純氧 78 5.5組織仿體分析 82 6. 結論與未來展望 85 6.1 定量結果 85 6.1.1 活體實驗 85 6.1.2 組織仿體實驗 85 6.2 未來展望 85 6.2.1 不同控制變因之實驗 85 6.2.2 逆向模型之改善 85 參考文獻 86 附錄:ANN模型架構 88 | - |
dc.language.iso | zh_TW | - |
dc.title | 利用多輸入神經網路及蒙地卡羅組織模型定量中央靜脈血氧飽和度 | zh_TW |
dc.title | Quantifying the Central Venous Oxygen Saturation via Multiple Input Neural Network and Monte Carlo Tissue Model | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 孫家偉;許富舜 | zh_TW |
dc.contributor.oralexamcommittee | Chia-Wei Sun;Fu-Shun Hsu | en |
dc.subject.keyword | 漫反射光譜,近紅外光譜,內頸靜脈,血氧飽和濃度,蒙地卡羅演算法,類神經網路,基因演算法, | zh_TW |
dc.subject.keyword | Diffuse reflectance spectroscopy,Near-infrared spectroscopy,Internal jugular vein,Oxygen saturation,Monte Carlo,Artificial neural network,Genetic algorithm, | en |
dc.relation.page | 88 | - |
dc.identifier.doi | 10.6342/NTU201903877 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-18 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
dc.date.embargo-lift | 2024-08-26 | - |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 5.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。