Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56335
Title: | k-Truss 分解之分散式演算法 Distributed Algorithms for k-Truss Decomposition |
Authors: | Pei-Ling Chen 陳姵伶 |
Advisor: | 陳銘憲(Ming-Syan Chen) |
Keyword: | k叢集,平行運算,社群網路,大數據, k-truss,parallel computing,social network,big data, |
Publication Year : | 2014 |
Degree: | 碩士 |
Abstract: | k-truss 是一種可以代表一個網路凝聚力大小的子圖,是在分析一個
社群網路的重要指標。然而,隨著巨量社群網路的出現,其構成的圖 會擁有百萬甚至上億個節點和邊,這導致k-truss 傳統單機版演算法所 需要的運算時間將會超乎想像的久;除此之外,如此大型的圖會無法 載入單一機器的記憶體,這也是另一個傳統演算法無法運作的原因。 目前,大資料的運算已經迫切的仰賴雲端運算,因此我們的目標是基 於雲端運算的框架上,設計出可以處理巨量資料的k-truss 演算法。在 本篇論文中,我們先就已經存在的MapReduce 版k-truss 演算法進行改 良。而由於MapReduce 的架構在處理分散式的圖運算時會因為太多的 迴圈而導致過多的IO 負載,我們轉而使用圖平行架構(graph-parallel anstractions) ,且提出一系列的理論基礎來設計一個k-truss 平行化演 算法的版本。實驗的結果顯示,從運算時間以及硬碟使用量的觀點來 看,我們基於圖平行架構所提出的k-truss 平行化演算法比其他基於 MapReduce 設計的版本來的更有效率。 k-truss, a type of cohesive subgraphs of a network, is an important measure for a social network graph. However, with the emergence of large online social networks, the running time of the traditional batch algorithms for k-truss decomposition is usually prohibitively long on such a graph with billions of edges and millions of vertices. Moreover, the size of a graph becomes too large to load into the main memory of a single machine. Currently, cloud computing has become an imperative way to process the big data. Thus, our aim is to design a scalable algorithm of k-truss decomposition in the scenario of cloud computing. In this thesis, we first improve the existing distributed k-truss decomposition in the MapReduce framework. We then propose a series of theoretical basis for k-truss and use them to design an algorithm based on graph-parallel abstractions. Our experiment results show that our method in the graph-parallel abstraction significantly outperforms the methods based on MapReduce in terms of running time and disk usage. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56335 |
Fulltext Rights: | 有償授權 |
Appears in Collections: | 電信工程學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-103-1.pdf Restricted Access | 2.71 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.