Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56335
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳銘憲(Ming-Syan Chen)
dc.contributor.authorPei-Ling Chenen
dc.contributor.author陳姵伶zh_TW
dc.date.accessioned2021-06-16T05:23:58Z-
dc.date.available2014-08-21
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-15
dc.identifier.citation[1] J. Cheng, Y. Ke, S. Chu, and M. T. Ozsu. Efficient core decomposition in massive
networks. In ICDE. IEEE, 2011.
[2] J. Cheng, L. Zhu, Y. Ke, and S. Chu. Fast algorithms for maximal clique enumeration
with limited memory. In SIGKDD. ACM, 2012.
[3] S. Chu and J. Cheng. Triangle listing in massive networks and its applications. In
SIGKDD. ACM, 2011.
[4] J. Cohen. Graph twiddling in a mapreduce world. Computing in Science & Engineering,
11(4):29–41, 2009.
[5] J. D. Cohen. Trusses: Cohesive subgraphs for social network analysis. National
Security Agency Technical Report, 2008.
[6] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
In OSDI. USENIX Association, 2004.
[7] W. Fan, X. Wang, and Y. Wu. Performance guarantees for distributed reachability
queries. In VLDB. VLDB Endowment, 2012.
[8] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph: Distributed
graph-parallel computation on natural graphs. In OSDI. USENIX Association, 2012.
[9] J. Leskovec and C. Faloutsos. Scalable modeling of real graphs using kronecker
multiplication. In ICML. ACM, 2007.
[10] R.-H. Li, J. X. Yu, and R. Mao. Efficient core maintenance in large dynamic graphs.
TKDE, 99(PrePrints):14, 2013.
[11] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein. Distributed
graphlab: a framework for machine learning and data mining in the cloud.
In VLDB. VLDB Endowment, 2012.
[12] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: a system for large-scale graph processing. In SIGMOD. ACM,
2010.
[13] A. Montresor, F. De Pellegrini, and D. Miorandi. Distributed k-core decomposition.
In SIGACT-SIGOPS. ACM, 2011.
[14] A. E. Sarıyuce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and U. V. Catalyurek. Streaming
algorithms for k-core decomposition. In VLDB. VLDB Endowment, 2013.
[15] S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng. Hama: An efficient
matrix computation with the mapreduce framework. In CloudCom. IEEE, 2010.
[16] J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg. Structural diversity in social
contagion. In PNAS. National Acad Sciences, 2012.
[17] L. G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103–111, 1990.
[18] J. Wang and J. Cheng. Truss decomposition in massive networks. In VLDB. VLDB
Endowment, 2012.
[19] D.-N. Yang, Y.-L. Chen, W.-C. Lee, and M.-S. Chen. On social-temporal group
query with acquaintance constraint. In VLDB. VLDB Endowment, 2011.
[20] D.-N. Yang, C.-Y. Shen, W.-C. Lee, and M.-S. Chen. On socio-spatial group query
for location-based social networks. In SIGKDD. ACM, 2012.
[21] H. Yu, A. Paccanaro, V. Trifonov, and M. Gerstein. Predicting interactions in protein
networks by completing defective cliques. Bioinformatics, 22:823–829, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56335-
dc.description.abstractk-truss 是一種可以代表一個網路凝聚力大小的子圖,是在分析一個
社群網路的重要指標。然而,隨著巨量社群網路的出現,其構成的圖
會擁有百萬甚至上億個節點和邊,這導致k-truss 傳統單機版演算法所
需要的運算時間將會超乎想像的久;除此之外,如此大型的圖會無法
載入單一機器的記憶體,這也是另一個傳統演算法無法運作的原因。
目前,大資料的運算已經迫切的仰賴雲端運算,因此我們的目標是基
於雲端運算的框架上,設計出可以處理巨量資料的k-truss 演算法。在
本篇論文中,我們先就已經存在的MapReduce 版k-truss 演算法進行改
良。而由於MapReduce 的架構在處理分散式的圖運算時會因為太多的
迴圈而導致過多的IO 負載,我們轉而使用圖平行架構(graph-parallel
anstractions) ,且提出一系列的理論基礎來設計一個k-truss 平行化演
算法的版本。實驗的結果顯示,從運算時間以及硬碟使用量的觀點來
看,我們基於圖平行架構所提出的k-truss 平行化演算法比其他基於
MapReduce 設計的版本來的更有效率。
zh_TW
dc.description.abstractk-truss, a type of cohesive subgraphs of a network, is an important measure
for a social network graph. However, with the emergence of large online
social networks, the running time of the traditional batch algorithms for
k-truss decomposition is usually prohibitively long on such a graph with billions
of edges and millions of vertices. Moreover, the size of a graph becomes
too large to load into the main memory of a single machine. Currently, cloud
computing has become an imperative way to process the big data. Thus, our
aim is to design a scalable algorithm of k-truss decomposition in the scenario
of cloud computing. In this thesis, we first improve the existing distributed
k-truss decomposition in the MapReduce framework. We then propose a series
of theoretical basis for k-truss and use them to design an algorithm based
on graph-parallel abstractions. Our experiment results show that our method
in the graph-parallel abstraction significantly outperforms the methods based
on MapReduce in terms of running time and disk usage.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:23:58Z (GMT). No. of bitstreams: 1
ntu-103-R01942069-1.pdf: 2775831 bytes, checksum: 8615e866645f3bbde4e822d3636891dc (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書i
誌謝ii
摘要iii
Abstract iv
1 Introduction 1
2 Related Work 4
2.1 Graph-Parallel Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Social Measures in Large Graphs . . . . . . . . . . . . . . . . . . . . . . 5
3 Preliminaries 6
3.1 k-Truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 k-Truss Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 Distributed k-Truss Decomposition in MapReduce Framework 11
4.1 Basic Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Improved Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5 Distributed k-Truss Decomposition based on Bulk Synchronous Parallel Model 17
5.1 Definition and Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Algorithm in Graph Parallel Abstraction . . . . . . . . . . . . . . . . . . 21
5.3 Correctness and Convergence . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6 Experimental Analysis 30
6.1 Experiments on Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Experiments on Real World Data . . . . . . . . . . . . . . . . . . . . . . 32
7 Conclusion 39
Bibliography 40
dc.language.isoen
dc.subject大數據zh_TW
dc.subject社群網路zh_TW
dc.subject平行運算zh_TW
dc.subjectk叢集zh_TW
dc.subjectk-trussen
dc.subjectparallel computingen
dc.subjectsocial networken
dc.subjectbig dataen
dc.titlek-Truss 分解之分散式演算法zh_TW
dc.titleDistributed Algorithms for k-Truss Decompositionen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂俊賢,陳正君,楊得年,鄧維光
dc.subject.keywordk叢集,平行運算,社群網路,大數據,zh_TW
dc.subject.keywordk-truss,parallel computing,social network,big data,en
dc.relation.page42
dc.rights.note有償授權
dc.date.accepted2014-08-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
2.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved