Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5312
標題: 零維二變數Gorenstein理想
Zero-Dimensional Gorenstein Ideals in Two Variables
作者: Yi-Shan Wang
王乙珊
指導教授: 朱樺(Huah Chu)
關鍵字: Gorenstein 理想,生成元,
Gorenstein ideal,generator,
出版年 : 2014
學位: 碩士
摘要: 本論文著眼於形式如 ((xn,yn) : Fk) 的零維 Gorenstein 理想,其中 Fk 是在 K[x,y] 中的一個次數為 k 的齊次多項式,K 為代數封閉體。首先,在 k ≤ n 且 Fk 中 xk 的係數 c0 不為 0 的情況下,我們給出一個齊次多項式屬於 ((xn, yn) : Fk) 的充要條件。接下來,我們說明在此情形下 ((xn, yn) : Fk) 可以由二個元素生成。 然後將結果推廣到任意的 c0 與 k。最後,我們介紹 Genoway,Ortiz-Albino 與 Tavares [8] 文章中的一些引理並改寫證明,再加上一個三變數的例子。
In this thesis, we are interested in zero-dimensional Gorenstein ideals of the form ((xn,yn) : Fk) where Fk is a homogeneous polynomial of degree k in K[x,y], K an algebraically closed field. Firstly, we figure out the necessary and sufficient condition for a homogenous polynomial to be in ((xn,yn) : Fk) where k ≤ n and the coefficient of xk, denoted by c0, is nonzero. Next, we declare that in this case ((xn,yn) : Fk) can be generated by two elements. Then expand the result to ar- bitrary c0 and k. At last, we introduce some lemmas from the work of Genoway, Ortiz-Albino, and Tavares [8] along with revised proofs and an example in 3 vari- ables.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5312
全文授權: 同意授權(全球公開)
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf5.42 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved