請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5312完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱樺(Huah Chu) | |
| dc.contributor.author | Yi-Shan Wang | en |
| dc.contributor.author | 王乙珊 | zh_TW |
| dc.date.accessioned | 2021-05-15T17:55:41Z | - |
| dc.date.available | 2014-07-29 | |
| dc.date.available | 2021-05-15T17:55:41Z | - |
| dc.date.copyright | 2014-07-29 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-09 | |
| dc.identifier.citation | [1] Bass, H., On the ubiquity of Gorenstein rings, Math. Z., 82 (1963), 8-28.
[2] Balcerzyk, S. & Jo ́zefiak, T., translation editor: Kirby, D, Commutative rings : dimension, multiplicity, and homological methods, Chichester, West Sussex, England : Ellis Horwood ; New York : Halsted Press, 1989. [3] Green, E. L., Complete Intersections and Gorenstein Ideals, J. Alg., 52 (1978), 264-273. [4] Eisenbud, D., Commutative Algebra with a View Toward Algebraic Geometry, New York: Springer Verlag, 1996. [5] Chen, P.J., Zero-Dimensional Gorenstein Ideals, Master Degree Thesis, Depart- ment of Mathematics, National Taiwan University, 2002. [6] Chen, C.A., Zero-Dimensional Gorenstein Ideals, Master Degree Thesis, Depart- ment of Mathematics, National Taiwan University, 2005. [7] Lin, T.J., On Gorenstein Ideal, Master Degree Thesis, Department of Mathe- matics, National Taiwan University, 2007. [8] Genoway, S., Ortiz-Albino, R. M. and Tavares, V., Zero-Dimensional Gorenstein Ideals , SIMU (2001), 93-107. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5312 | - |
| dc.description.abstract | 本論文著眼於形式如 ((xn,yn) : Fk) 的零維 Gorenstein 理想,其中 Fk 是在 K[x,y] 中的一個次數為 k 的齊次多項式,K 為代數封閉體。首先,在 k ≤ n 且 Fk 中 xk 的係數 c0 不為 0 的情況下,我們給出一個齊次多項式屬於 ((xn, yn) : Fk) 的充要條件。接下來,我們說明在此情形下 ((xn, yn) : Fk) 可以由二個元素生成。 然後將結果推廣到任意的 c0 與 k。最後,我們介紹 Genoway,Ortiz-Albino 與 Tavares [8] 文章中的一些引理並改寫證明,再加上一個三變數的例子。 | zh_TW |
| dc.description.abstract | In this thesis, we are interested in zero-dimensional Gorenstein ideals of the form ((xn,yn) : Fk) where Fk is a homogeneous polynomial of degree k in K[x,y], K an algebraically closed field. Firstly, we figure out the necessary and sufficient condition for a homogenous polynomial to be in ((xn,yn) : Fk) where k ≤ n and the coefficient of xk, denoted by c0, is nonzero. Next, we declare that in this case ((xn,yn) : Fk) can be generated by two elements. Then expand the result to ar- bitrary c0 and k. At last, we introduce some lemmas from the work of Genoway, Ortiz-Albino, and Tavares [8] along with revised proofs and an example in 3 vari- ables. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-15T17:55:41Z (GMT). No. of bitstreams: 1 ntu-103-R00221018-1.pdf: 5554379 bytes, checksum: 375154712def5f6269051ba0145c6b9d (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書.............................................i
Acknowledgements.........................................ii Abstract (in Chinese)...................................iii Abstract (in English)....................................iv §0. Introduction..........................................1 §1. Some Lemmas...........................................6 §2. Cases with c0 ̸=0 and k≤n.............................14 §3. Cases with c0 =0 and k≤n.............................30 §4. Discussion...........................................33 References...............................................38 | |
| dc.language.iso | en | |
| dc.subject | Gorenstein 理想 | zh_TW |
| dc.subject | 生成元 | zh_TW |
| dc.subject | Gorenstein ideal | en |
| dc.subject | generator | en |
| dc.title | 零維二變數Gorenstein理想 | zh_TW |
| dc.title | Zero-Dimensional Gorenstein Ideals in Two Variables | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳榮凱,黃一樵 | |
| dc.subject.keyword | Gorenstein 理想,生成元, | zh_TW |
| dc.subject.keyword | Gorenstein ideal,generator, | en |
| dc.relation.page | 38 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2014-07-10 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf | 5.42 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
