Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5312
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱樺(Huah Chu)
dc.contributor.authorYi-Shan Wangen
dc.contributor.author王乙珊zh_TW
dc.date.accessioned2021-05-15T17:55:41Z-
dc.date.available2014-07-29
dc.date.available2021-05-15T17:55:41Z-
dc.date.copyright2014-07-29
dc.date.issued2014
dc.date.submitted2014-07-09
dc.identifier.citation[1] Bass, H., On the ubiquity of Gorenstein rings, Math. Z., 82 (1963), 8-28.
[2] Balcerzyk, S. & Jo ́zefiak, T., translation editor: Kirby, D, Commutative rings : dimension, multiplicity, and homological methods, Chichester, West Sussex, England : Ellis Horwood ; New York : Halsted Press, 1989.
[3] Green, E. L., Complete Intersections and Gorenstein Ideals, J. Alg., 52 (1978), 264-273.
[4] Eisenbud, D., Commutative Algebra with a View Toward Algebraic Geometry, New York: Springer Verlag, 1996.
[5] Chen, P.J., Zero-Dimensional Gorenstein Ideals, Master Degree Thesis, Depart- ment of Mathematics, National Taiwan University, 2002.
[6] Chen, C.A., Zero-Dimensional Gorenstein Ideals, Master Degree Thesis, Depart- ment of Mathematics, National Taiwan University, 2005.
[7] Lin, T.J., On Gorenstein Ideal, Master Degree Thesis, Department of Mathe- matics, National Taiwan University, 2007.
[8] Genoway, S., Ortiz-Albino, R. M. and Tavares, V., Zero-Dimensional Gorenstein Ideals , SIMU (2001), 93-107.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5312-
dc.description.abstract本論文著眼於形式如 ((xn,yn) : Fk) 的零維 Gorenstein 理想,其中 Fk 是在 K[x,y] 中的一個次數為 k 的齊次多項式,K 為代數封閉體。首先,在 k ≤ n 且 Fk 中 xk 的係數 c0 不為 0 的情況下,我們給出一個齊次多項式屬於 ((xn, yn) : Fk) 的充要條件。接下來,我們說明在此情形下 ((xn, yn) : Fk) 可以由二個元素生成。 然後將結果推廣到任意的 c0 與 k。最後,我們介紹 Genoway,Ortiz-Albino 與 Tavares [8] 文章中的一些引理並改寫證明,再加上一個三變數的例子。zh_TW
dc.description.abstractIn this thesis, we are interested in zero-dimensional Gorenstein ideals of the form ((xn,yn) : Fk) where Fk is a homogeneous polynomial of degree k in K[x,y], K an algebraically closed field. Firstly, we figure out the necessary and sufficient condition for a homogenous polynomial to be in ((xn,yn) : Fk) where k ≤ n and the coefficient of xk, denoted by c0, is nonzero. Next, we declare that in this case ((xn,yn) : Fk) can be generated by two elements. Then expand the result to ar- bitrary c0 and k. At last, we introduce some lemmas from the work of Genoway, Ortiz-Albino, and Tavares [8] along with revised proofs and an example in 3 vari- ables.en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:55:41Z (GMT). No. of bitstreams: 1
ntu-103-R00221018-1.pdf: 5554379 bytes, checksum: 375154712def5f6269051ba0145c6b9d (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書.............................................i
Acknowledgements.........................................ii
Abstract (in Chinese)...................................iii
Abstract (in English)....................................iv
§0. Introduction..........................................1
§1. Some Lemmas...........................................6
§2. Cases with c0 ̸=0 and k≤n.............................14
§3. Cases with c0 =0 and k≤n.............................30
§4. Discussion...........................................33
References...............................................38
dc.language.isoen
dc.subjectGorenstein 理想zh_TW
dc.subject生成元zh_TW
dc.subjectGorenstein idealen
dc.subjectgeneratoren
dc.title零維二變數Gorenstein理想zh_TW
dc.titleZero-Dimensional Gorenstein Ideals in Two Variablesen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳榮凱,黃一樵
dc.subject.keywordGorenstein 理想,生成元,zh_TW
dc.subject.keywordGorenstein ideal,generator,en
dc.relation.page38
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-07-10
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf5.42 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved