Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50848
Title: 主題人物互動網絡建構之研究
A Study of Constructing Topic Person Interaction
Network
Authors: Yung-Chun Chang
張詠淳
Advisor: 陳建錦(Chien Chin Chen)
Co-Advisor: 許聞廉(Wen-Lian Hsu)
Keyword: 文字探勘,主題摘要,主題人物互動關係偵測,主題人物互動關係擷取,主題人物互動網絡,
Text Mining,Topic Summarization,Interaction Detection,Interaction Extraction,Topic Person Interaction Network,
Publication Year : 2016
Degree: 博士
Abstract: 一個主題事件是由特定的時間、地點以及人物所構成,因此探索主題事件中人與人的互動關係能夠協助使用者建構起該主題事件的背景知識,進而快速理解該主題文章中所描述的內容。不同於以往的研究,本研究所進行的主題人物互動關係研究並不局限於一特定關係,或尋找一特定關係的關係擷取規則,且此互動關係是會隨著主題事件的不同而改變。在探索某主題下之人物互動關係時,主題文章透過互動關係偵測方法分割成多個片段,並且判斷哪些片段是含有主題人物互動關係存在,接著應用資訊擷取演算法從互動文句片段中抽取互動關係的組成元素,進而建構出主題人物互動網絡。
本論文將辨識互動文句片段辨識視為一個分類的問題,為了探索不同知識對辨識主題人物互動關係之效益,提出了一個以特徵為基礎的互動文句片段辨識方法,該方法共包含了19種不同特徵知識,考量了語法結構、文章脈絡以及語意資訊。在探索不同知識對本研究之效益後,為了能有效地表達與整合不同知識之結構,本論文進而提出了一個豐富互動樹狀結構,透過此樹狀結構有效地整合句法結構、文章脈絡以及語意資訊,並透過樹狀核心方法學習該結構,藉此捕捉人際互動關係描述。本研究蒐集大量的新聞事件進行效能評估,根據實驗結果顯示,結合不同的特徵知識能夠有效地提升辨識人際互動關係之效能,且本研究所提出的豐富互動樹狀結構能有效地偵測主題人物互動,而其效能也優於其他的比較方法;此外,根據案例分析之結果顯示,本研究方法確實能有效地建構主題人物互動關係網絡,此一網絡呈現出人際互動關係之多樣且變動之特性,並能提供讀者快速掌握該主題之背景知識。
The development of a topic in a set of topic documents is constituted by a series of person interactions at a specific time and place. Knowing the interactions of the persons mentioned in these documents is helpful for readers to better comprehend the documents. To discover person interactions, we need a detection method that can identify text segments containing information about the interactions. Information extraction algorithms then analyse the segments to extract interaction tuples and construct an interaction network of topic persons.
In this dissertation, we define interaction detection as a classification problem. We first recognize person interactions from topic documents by exploring various types of knowledge. We present a feature-based approach called FISER, exploits 19 features covering syntactic, context-dependent, and semantic information in text to detect person interactions. Then, we design the rich interactive tree structure to represent syntactic, context, and semantic information of text, and this structure is incorporated into a tree-based convolution kernel to identify interactive segments. Experiment results based on real world topics demonstrate that effective incorporation of divers features enable our system recognize person interactions efficiently. Moreover, the proposed rich interactive tree structure effectively detects the topic person interaction and that our method outperforms many well-known relation extraction and protein-protein interaction methods.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50848
DOI: 10.6342/NTU201600791
Fulltext Rights: 有償授權
Appears in Collections:資訊管理學系

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
3.88 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved