Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50848
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建錦(Chien Chin Chen)
dc.contributor.authorYung-Chun Changen
dc.contributor.author張詠淳zh_TW
dc.date.accessioned2021-06-15T13:02:04Z-
dc.date.available2017-05-13
dc.date.copyright2016-07-26
dc.date.issued2016
dc.date.submitted2016-07-11
dc.identifier.citation[1] P. Annesi, D. Croce, and R. Basili, 'Semantic Compositionality in Tree Kernels,' Proc. the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp. 1029-1038, 2014.
[2] M. Banko and O. Etzioni, 'The tradeoffs between open and traditional relation extraction,' Proc. 46th Annual Meeting of the Association for Computational Linguistics on Human Language Technoloies, pp. 28-36, 2008.
[3] M. Banko, M.J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni, 'Open information extraction from the web,' Proc. 20th International Joint Conference on Artifical intelligence, pp. 2670-2676, 2007.
[4] A.L. Berger, V.J.D. Pietra, and S.A.D. Pietra, 'A maximum entropy approach to natural language processing,'Computational Linguistics, 22(1), pp. 39-71, 1996.
[5] J. Björne and T. Salakoski, 'Generalizing Biomedical Event Extraction,' Proc. BioNLP Shared Task 2011 Workshop, pp. 183-191, 2011.
[6] Y.C. Chang, C.C. Chen, and W.L. Hsu, 'A Composite Kernel Approach for Detecting Interactive Segments in Chinese Topic Documents,' Proc. 9th Asia Information Retrieval Societies Conference, pp. 215-226, 2013.
[7] Y.C. Chang, P.H. Chuang, C.C. Chen, and W.L. Hsu, 'FISER: An Effective Method for Detecting Interactions between Topic Persons,' Proc. 8th Asia Information Retrieval Societies Conference, pp. 267-277, 2012.
[8] Y.C. Chang, Y.L. Hsieh, C.C. Chen, and W.L. Hsu, Semantic Frame-based Natural Language Understanding for Intelligent Topic Detection Agent,' Proc. The 27th International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems, pp. 339-348 (2014)
[9] Y.R. Chao, 'A Grammar of Spoken Chinese,' Berkeley: University of California Press, 1968.
[10] J. Carletta, 'Assessing Agreement on Classification Tasks: The Kappa Statistic,' Computational linguistics, vol. 22, no. 2, pp. 249-254, 1996.
[11] C.C. Chen and M.C. Chen, 'TSCAN: A Content Anatomy Approach to Temporal Topic Summarization,' IEEE Trans. Knowledge and Data Eng., vol. 24, pp. 170-183, 2012.
[12] H. Chieu and H. Ng, 'A maximum entropy approach to information extraction from semi-structured and free text,' Proc. 18th National Conference on Artificial intelligence, pp. 786-791, 2002.
[13] J. Christensen, Mausam, S. Soderland, and O. Etzioni, 'Semantic role labeling for open information extraction,' Proc. NAACL HLT 2010 First International Workshop on Formalisms and Methodology for Learning by Reading, pp. 52-60, 2010.
[14] M. Collins and N. Duffy, 'Convolution Kernels for Natural Language,' Proc. Annual Conference on Neural Information Processing Systems, pp. 625-632, 2001.
[15] D. Croce, A. Moschitti, and R. Basili, 'Structured Lexical Similarity via Convolution Kernels on Dependency Trees,' Proc. the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 1034-1046, 2011.
[16] D. Croce, R. Basili, A. Moschitti, and M. Palmer, 'Verb Classification using Distributional Similarity in Syntactic and Semantic Structures,' Proc.the 50th Annual Meeting of the Association for Computational Linguistics, pp. 263-272, 2012.
[17] D. Croce, E. Bastianelli, and G. Castellucci, 'Structured Kernel-Based Learning for the Frame Labeling over Italian Texts,'Proc. Evaluation of Natural Language and Speech Tools for Italian, pp. 220-229, 2013.
[18] A. Culotta and J. Sorensen, 'Dependency tree kernels for relation extraction,' Proc. 42nd Annual Meeting on Association for Computational Linguistics, pp. 423-429, 2004.
[19] Z. Dmitry, A. Chinatsu, and R. Anthony, 'Kernel Methods for Relation Extraction,' The Journal of Machine Learning Research, vol. 3, 3/1/2003, pp. 1083-1106, 2003.
[20] J.H. Eom, S. Kim, S.H. Kim, B.K. Zhang, 'A Tree Kernel-based Method for Protein-Protein Interaction Mining from Biomedical Literature,' Knowledge Discovery in Life Science Literature, pp 42-52, 2006.
[21] O. Etzioni, A. Fader, J. Christensen, S. Soderland, and Mausam, 'Open information extraction: the second generation,' Proc. 22nd International Joint Conference on Artificial Intelligence, pp. 3-10, 2011.
[22] A. Fader, S. Soderland, O. Etzioni, 'Identifying Relations for Open Information Extraction,' Proc. Conference on Empirical Methods in Natural Language Processing, pp. 1535-1545, 2011.
[23] C. Fellbaum, 'WordNet: An Electronic Lexical Database,' MIT Press, Cambridge, 1998.
[24] A. Feng and J. Allan, 'Finding and Linking Incidents in News,' Proc. 16th ACM International Conference on Information and Knowledge Management, pp. 821-830, 2007.
[25] H. Feng, K. Chen, X. Deng, and W. Zheng, 'Accessor variety criteria for Chinese word extraction,' Computational Linguistics, 30(1), pp. 75-93, 2004.
[26] S. Filice, G. Castellucci, D. Croce, and R. Basili, 'KeLP: a Kernel-based Learning Platform for Natural Language Processing, ' Proc. the 53rd Annual Meeting of the Association for Computational Linguistics - System Demonstrations, pp. 19-24, 2015.
[27] J.R. Finkel, T. Grenager, and C.D. Manning, 'Incorporating Non-local Information into Information Extraction Systems by Gibbs Sampling,' Proc. 43nd Annual Meeting of the Association for Computational Linguistics, pp. 363-370, 2005.
[28] J. Han and M. Kamber, 'Data Mining: Concepts and Techniques,' 2nd edn., 2006.
[29] V. Hatzivassiloglou and W. Weng, 'Learning Anchor Verbs for Biological Interaction Patterns from Published Text Articles,' International Journal of Medical Informatics, vol. 67, issue. 1, pp. 19-32, 2002.
[30] T. Hirano, H. Asano, Y. Matsuo, and G. Kikui, 'Recognizing relation expression between named entities based on inherent and context-dependent features of relational words,' Proc. 23rd International Conference on Computational Linguistics: Posters, pp. 409-417, 2010.
[31] T. Hirano, Y. Matsuo, and G. Kikui, 'Detecting semantic relations between named entities in text using contextual features,' Proc. 45th Annual Meeting of the Association for Computational Linguistics on Interactive Poster and Demonstration Sessions, pp. 157-160, 2007.
[32] S.L. Huang, Y.S. Chung, and K.J. Chen, 'E-HowNet: the expansion of HowNet,' Proc. 1st National HowNet Workshop, pp. 10-22, 2008.
[33] J. Jiang and C. Zhai, 'A Systematic Exploration of the Feature Space for Relation Extraction,' Proc. Human Language Technologies: The Conference of the North American Chapter of the Association for Computational Linguistics, pp. 113-120, 2007.
[34] C.K. Jiann, S.L. Huang, Y.Y. Shih, and Y.J. Chen, 'Extended-HowNet - A Representational Framework for Concepts,' Proc. Workshop on Ontologies and Lexical Resources in International Joint Conference on Natural Language Processing, pp. 1-6, 2005.
[35] N. Jindal and B. Liu, 'Opinion spam and analysis,' Proc. International Conference on Web Search and Web Data Mining, pp. 219-230, 2008.
[36] T. Joachims, 'Text Categorization with Support Vector Machine: Learning with Many Relevant Features,' Proc. 10th European Conference on Machine Learning, pp. 137-142, 1998.
[37] S.R. Jonnalagadda, D. Li, S. Sohn, S.T. Wu, K. Wagholikar, M. Torii, and H. Liu, 'Coreference Analysis in Clinical Notes: A Multi-pass Sieve with Alternate Anaphora Resolution Modules, ' Journal of the American Medical Informatics Association, vol. 19(5), pp. 867–874, 2011.
[38] N. Kambhatla, 'Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations,' Proc. 42nd Annual Meeting of the Association for Computational Linguistics on Interactive Poster and Demonstration Sessions, pp. 178-181, 2004.
[39] K.P. Kamune, and A.J. Agrawal, 'Hybrid Approach to Pronominal Anaphora Resolution in English Newspaper Text,' International Journal of Intelligent Systems and Applications, vol. 7, pp. 56-64, 2015.
[40] M.Y. Kim, 'Detection of gene interactions based on syntactic relations,' Journal of Biomedicine and Biotechnology, 2008, pp. 371-380, 2008.
[41] R. Kohavi, 'A study of cross-validation and bootstrap for accuracy estimation and model selection,' Proc. 14th International Joint Conference on Artificial Intelligence, pp. 1137-1143, 1995.
[42] J.D. Lafferty, A. McCallum, and F.C.N. Pereira, 'Conditional random fields: probabilistic models for segmenting and labeling sequence data,' Proc. 18th International Conference on Machine Learning, pp. 282-289, 2001.
[43] J.R. Landis and G.K Gary, 'The Measurement of Observer Agreement for Categorical Data. Biometrics, pp. 159-174, 1977.
[44] R. Levy and C.D. Manning, 'Is It Harder to Parse Chinese, or the Chinese Treebank?' Proc. 41st Annual Meeting of the Association for Computational Linguistics, pp. 439-446, 2003.
[45] C.N. Li and S.A. Thompson, Mandarin Chinese: A Functional Reference Grammar. Crane, Taipei, 1981.
[46] Y. Li, J. Jiang, H.L. Chieu, and K.M. Chai, 'Extracting Relation Descriptors with Conditional Random Fields,' Proc. 5th International Joint Conference on Natural Language Processing, pp. 392-400, 2011.
[47] W. Li, P. Zhang, F. Wei, Y. Hou, and Q. Lu, 'A novel feature-based approach to Chinese entity relation extraction,' Proc. 46th Annual Meeting of the Association for Computational Linguistics on Human Language Technologies: Short Papers, pp. 89-92, 2008.
[48] G.C. Ling, M. Asahara, and Y. Matsumoto, 'Chinese unknown word identification using character-based tagging and chunking,' Proc. 41st Annual Meeting on Association for Computational Linguistics, pp. 197-200, 2003.
[49] C. Ling, C. Li, 'Data Mining for Direct Marketing: Problems and Solutions,' Proc. 4th International Conference on Knowledge Discovery and Data Mining, pp. 73-79, 1998.
[50] W. Li, P. Zhang, F. Wei, Y. Hou, and Q. Lu, 'A novel feature-based approach to Chinese entity relation extraction,' Proc. 46th Annual Meeting of the Association for Computational Linguistics on Human Language Technologies: Short Papers, pp. 89-92, 2008.
[51] C.D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval, Cambridge University Press., 2nd edn, 2008.
[52] C.D. Manning and H. Schütze, Foundations of Statistical Natural Language Processing, Massachusetts: MIT Press., 1st edn, 1999.
[53] T.M. Mitchell, Machine learning, Boston, MA: WCB McGraw-Hill., 1st edn, 1997.
[54] Y. Miyao, K. Sagae, R. Satre, T. Matsuzaki, and J. Tsujii, 'Evaluating Contributions of Natural Language Parsers to Protein-Protein Interaction Extraction,' Bioinformatics, vol. 25, issue. 3, pp. 394-400, 2009.
[55] A. Moschitti, 'A Study on Convolution Kernels for Shallow Semantic Parsing,' Proc. 42nd Annual Meeting of the Association for Computational Linguistics, pp. 21-26, 2004.
[56] A. Moschitti, 'Making Tree kernels Practical for Natural Language Learning,' Proc. Eleventh International Conference on European Association for Computational Linguistics, pp. 113-120, 2006.
[57] R. Nallapati, A. Feng, F. Peng, and J. Allan, 'Event Threading within News Topics,' Proc. 13th ACM International Conference on Information and Knowledge Management, pp. 446-453, 2004.
[58] A. Ng and M. Jordan, 'On Discriminative vs. Generative classifiers: A comparison of logistic regression and naive Bayes,' Proc. 14th Neural Information Processing Systems, pp. 841-848, 2001.
[59] T. Ono, H. Hishigaki, A. Tanigam, and T. Takagi, 'Automated Extraction of Information on Protein-Protein Interactions from the Biological Literature,' Bioinformatics, vol. 17, issue. 2, pp. 155-161, 2001.
[60] K.V. Prince, 'Predication and Information Structure in Mandarin Chinese,' Journal of East Asian Linguistics, vol. 21, issue 4, pp. 329-366, 2012.
[61] L.H. Qian, and G.D Zhou, 'Tree Kernel-based Protein–Protein Interaction Extraction from Biomedical Literature,' Journal of Biomatical Informatics, vol. 45, no. 3, pp. 535-543, 2012.
[62] L.H. Qian, G.D. Zhou, Q.M. Zhu, and P.D. Qian, 'Exploiting Constituent Dependencies for Tree Kernel-based Semantic Relation Extraction,' Proc. 22nd International Conference on Computational Linguistics, pp. 697-704, 2008.
[63] P. Resnik, 'Using Information Content to Evaluate Semantic Similarity in a Taxonomy,' Proc. 14th international joint conference on Artificial intelligence, pp. 448-453, 1995.
[64] B.Y. Ricardo and R.N. Berthier, 'Modern Information Retrieval: The Concepts and Technology behind Search,' Addison-Wesley Professional, 2011.
[65] J.A. Rice, 'Mathematical Statistics and Data Analysis,'Wadsworth and Brooks/Cole, 2010.
[66] C.W. Shih, C.W. Lee, R.T. Tsai, and W.L. Hsu, 'Validating Contradiction in Texts Using Online Co-Mention Pattern Checking,' ACM Transactions on Asian Language Information Processing, vol. 11, issue 4, pp. 17:1-12:21, 2012.
[67] Y.H. Tseng, L.H. Lee, S.Y. Lin, B.S. Liao, M.J. Liu, H.H. Chen, O. Etzioni, and A. Fader, 'Chinese Open Relation Extraction for Knowledge Acquisition', Proc. 14th Conference of the European Chapter of the Association for Computational Linguistics, pp. 12-16, 2014.
[68] G.M. Vernon, 'Human Interaction: An Introduction to Sociology,' Ronald Press Co., New York, 1st edn., 1965.
[69] Y.K. Wang, Y.S. Chen, and W.L. Hsu, 'Empirical study of Mandarin Chinese discourse analysis: an event-based approach, ' Proc. 10th IEEE International Conference on Tools with Artificial Intelligence, pp. 466-473, 1998.
[70] J. Xiao, J. Su, G.D. Zhou, and C.L. Tan, 'Protein-Protein Interaction Extraction: A Supervised Learning Approach,' Proc. 1st International Symposium on Semantic Mining in Biomedicine, pp. 51-59, 2005.
[71] M. Zhang, J. Zhang, J. Su, and G.D. Zhou, 'A Composite Kernel to Extract Relations between Entities with both Flat and Structured Features,' Proc. 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics, pp. 825-832, 2006.
[72] M. Zhang, G.D. Zhou, and A. Aw, 'Exploring Syntactic Structured Features over Parse Trees for Relation Extraction Using Kernel Methods,' Information Processing and Management, vol. 44, pp. 687-701, 2008.
[73] G.D. Zhou, L.H. Qian, and J.X. Fan, 'Tree Kernel-based Semantic Relation Extraction with Rich Syntactic and Semantic Information,' Information Sciences, vol. 180, no. 8, pp. 1313-1325, 2010.
[74] J. Zhu, Z. Nie, X. Liu, B. Zhang, and J.R. Wen, 'StatSnowball: a statistical approach to extracting entity relationships,' Proc. 18th International Conference on World Wide Web, pp. 101-110, 2009.
[75] G.D. Zhou, J. Su, J. Zhang, and M. Zhang, 'Exploring Various Knowledge in Relation Extraction,' Proc. 43th Annual Meeting of the Association for Computational Linguistics, pp. 427-434, 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50848-
dc.description.abstract一個主題事件是由特定的時間、地點以及人物所構成,因此探索主題事件中人與人的互動關係能夠協助使用者建構起該主題事件的背景知識,進而快速理解該主題文章中所描述的內容。不同於以往的研究,本研究所進行的主題人物互動關係研究並不局限於一特定關係,或尋找一特定關係的關係擷取規則,且此互動關係是會隨著主題事件的不同而改變。在探索某主題下之人物互動關係時,主題文章透過互動關係偵測方法分割成多個片段,並且判斷哪些片段是含有主題人物互動關係存在,接著應用資訊擷取演算法從互動文句片段中抽取互動關係的組成元素,進而建構出主題人物互動網絡。
本論文將辨識互動文句片段辨識視為一個分類的問題,為了探索不同知識對辨識主題人物互動關係之效益,提出了一個以特徵為基礎的互動文句片段辨識方法,該方法共包含了19種不同特徵知識,考量了語法結構、文章脈絡以及語意資訊。在探索不同知識對本研究之效益後,為了能有效地表達與整合不同知識之結構,本論文進而提出了一個豐富互動樹狀結構,透過此樹狀結構有效地整合句法結構、文章脈絡以及語意資訊,並透過樹狀核心方法學習該結構,藉此捕捉人際互動關係描述。本研究蒐集大量的新聞事件進行效能評估,根據實驗結果顯示,結合不同的特徵知識能夠有效地提升辨識人際互動關係之效能,且本研究所提出的豐富互動樹狀結構能有效地偵測主題人物互動,而其效能也優於其他的比較方法;此外,根據案例分析之結果顯示,本研究方法確實能有效地建構主題人物互動關係網絡,此一網絡呈現出人際互動關係之多樣且變動之特性,並能提供讀者快速掌握該主題之背景知識。
zh_TW
dc.description.abstractThe development of a topic in a set of topic documents is constituted by a series of person interactions at a specific time and place. Knowing the interactions of the persons mentioned in these documents is helpful for readers to better comprehend the documents. To discover person interactions, we need a detection method that can identify text segments containing information about the interactions. Information extraction algorithms then analyse the segments to extract interaction tuples and construct an interaction network of topic persons.
In this dissertation, we define interaction detection as a classification problem. We first recognize person interactions from topic documents by exploring various types of knowledge. We present a feature-based approach called FISER, exploits 19 features covering syntactic, context-dependent, and semantic information in text to detect person interactions. Then, we design the rich interactive tree structure to represent syntactic, context, and semantic information of text, and this structure is incorporated into a tree-based convolution kernel to identify interactive segments. Experiment results based on real world topics demonstrate that effective incorporation of divers features enable our system recognize person interactions efficiently. Moreover, the proposed rich interactive tree structure effectively detects the topic person interaction and that our method outperforms many well-known relation extraction and protein-protein interaction methods.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:02:04Z (GMT). No. of bitstreams: 1
ntu-105-D98725007-1.pdf: 3972138 bytes, checksum: cba1b30251b4d18f5d533999ab6621a2 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 I
謝辭 II
中文摘要 III
英文摘要 VI
Chapter 1 Introduction 1
1.1 An Introduction to Person Interaction Recognization 1
1.2 Motivation 4
1.3 The Organization of This Dissertation 6
Chapter 2 Related Works 8
2.1 Relation Extraction 8
2.2 Open Information Extraction 11
2.3 Protein-protein Interaction Detection 13
Chapter 3 A Feature-based Detection System for Person Interactions 16
3.1 Candidate Segment Generation 17
3.2 Interactive Segment Recognizer 19
3.3 Feature Extraction 21
Chapter 4 Experimental Results of FISER 27
4.1 Corpus and Evaluation Metric 27
4.2 Effects of the Features 31
4.3 The Best Combination of the Features 35
4.4 The Effectiveness of the Features 37
4.5 Comparison with Open IE Methods 41
Chapter 5 A Tree Kernel-based Method for Person Interaction Detection 46
5.1 Candidate Segment Generation 47
5.2 Segment Structure Generalization 49
5.3 Rich Interactive Tree Construction 52
5.3.1 RIT Branching 53
5.3.2 RIT Pruning 53
5.3.3 RIT Ornamenting 57
5.4 Convolution Tree Kernel Classification 60
Chapter 6 Experimentation for SPIRIT 63
6.1 Evaluation Dataset and Experiment Setting 63
6.2 System Component Evaluation 65
6.2.1 Performance Evaluation for Interaction Detection 65
6.3 Case Studies: Topic Person Interaction Network 86
Chapter 7 Conclusions Remarks and Future Works 91
Reference 95
dc.language.isoen
dc.subject主題人物互動關係擷取zh_TW
dc.subject主題人物互動關係偵測zh_TW
dc.subject主題摘要zh_TW
dc.subject文字探勘zh_TW
dc.subject主題人物互動網絡zh_TW
dc.subject主題人物互動關係偵測zh_TW
dc.subject主題人物互動關係擷取zh_TW
dc.subject主題摘要zh_TW
dc.subject文字探勘zh_TW
dc.subject主題人物互動網絡zh_TW
dc.subjectInteraction Detectionen
dc.subjectTopic Person Interaction Networken
dc.subjectInteraction Extractionen
dc.subjectInteraction Detectionen
dc.subjectTopic Summarizationen
dc.subjectText Miningen
dc.subjectTopic Person Interaction Networken
dc.subjectInteraction Extractionen
dc.subjectText Miningen
dc.subjectTopic Summarizationen
dc.title主題人物互動網絡建構之研究zh_TW
dc.titleA Study of Constructing Topic Person Interaction
Network
en
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.coadvisor許聞廉(Wen-Lian Hsu)
dc.contributor.oralexamcommittee陳信希(Hsin-Hsi Chen),魏志平(Chih-Ping Wei),陳孟彰(Meng Chang Chen),古倫維(Lun-Wei Ku)
dc.subject.keyword文字探勘,主題摘要,主題人物互動關係偵測,主題人物互動關係擷取,主題人物互動網絡,zh_TW
dc.subject.keywordText Mining,Topic Summarization,Interaction Detection,Interaction Extraction,Topic Person Interaction Network,en
dc.relation.page105
dc.identifier.doi10.6342/NTU201600791
dc.rights.note有償授權
dc.date.accepted2016-07-11
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
3.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved